Suppr超能文献

借助人工智能加速化学科学发展。

Accelerated chemical science with AI.

作者信息

Back Seoin, Aspuru-Guzik Alán, Ceriotti Michele, Gryn'ova Ganna, Grzybowski Bartosz, Gu Geun Ho, Hein Jason, Hippalgaonkar Kedar, Hormázabal Rodrigo, Jung Yousung, Kim Seonah, Kim Woo Youn, Moosavi Seyed Mohamad, Noh Juhwan, Park Changyoung, Schrier Joshua, Schwaller Philippe, Tsuda Koji, Vegge Tejs, von Lilienfeld O Anatole, Walsh Aron

机构信息

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University Seoul Republic of Korea

Departments of Chemistry, Computer Science, University of Toronto St. George Campus Toronto ON Canada.

出版信息

Digit Discov. 2023 Dec 6;3(1):23-33. doi: 10.1039/d3dd00213f. eCollection 2024 Jan 17.

Abstract

In light of the pressing need for practical materials and molecular solutions to renewable energy and health problems, to name just two examples, one wonders how to accelerate research and development in the chemical sciences, so as to address the time it takes to bring materials from initial discovery to commercialization. Artificial intelligence (AI)-based techniques, in particular, are having a transformative and accelerating impact on many if not most, technological domains. To shed light on these questions, the authors and participants gathered in person for the ASLLA Symposium on the theme of 'Accelerated Chemical Science with AI' at Gangneung, Republic of Korea. We present the findings, ideas, comments, and often contentious opinions expressed during four panel discussions related to the respective general topics: 'Data', 'New applications', 'Machine learning algorithms', and 'Education'. All discussions were recorded, transcribed into text using Open AI's Whisper, and summarized using LG AI Research's EXAONE LLM, followed by revision by all authors. For the broader benefit of current researchers, educators in higher education, and academic bodies such as associations, publishers, librarians, and companies, we provide chemistry-specific recommendations and summarize the resulting conclusions.

摘要

鉴于对可再生能源和健康问题(仅举两个例子)的实用材料和分子解决方案的迫切需求,人们不禁要问如何加速化学科学的研发,以缩短从材料最初发现到商业化所需的时间。特别是基于人工智能(AI)的技术,正在对许多(即便不是大多数)技术领域产生变革性和加速性的影响。为了阐明这些问题,作者和参与者齐聚韩国江陵,亲自参加了以“利用人工智能加速化学科学”为主题的ASLLA研讨会。我们展示了在与各自一般主题相关的四次小组讨论中表达的研究结果、想法、评论以及常常有争议的观点,这些主题分别是:“数据”、“新应用”、“机器学习算法”和“教育”。所有讨论都进行了记录,使用OpenAI的Whisper转录为文本,并使用LG人工智能研究公司的EXAONE大语言模型进行总结,随后由所有作者进行修订。为了让当前的研究人员、高等教育工作者以及诸如协会、出版商、图书馆员和公司等学术机构更广泛地受益,我们提供了针对化学领域的建议并总结了所得出的结论。

相似文献

1
Accelerated chemical science with AI.
Digit Discov. 2023 Dec 6;3(1):23-33. doi: 10.1039/d3dd00213f. eCollection 2024 Jan 17.
2
3
Accelerating AI for science: open data science for science.
R Soc Open Sci. 2024 Aug 21;11(8):231130. doi: 10.1098/rsos.231130. eCollection 2024 Aug.
4
From Nanobots to Neural Networks: Multifaceted Revolution of Artificial Intelligence in Surgical Medicine and Therapeutics.
Cureus. 2023 Nov 19;15(11):e49082. doi: 10.7759/cureus.49082. eCollection 2023 Nov.
6
The Role of Artificial Intelligence in the Future of Pharmacy Education.
Am J Pharm Educ. 2023 Oct;87(10):100135. doi: 10.1016/j.ajpe.2023.100135. Epub 2023 May 26.
8
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.
9
Artificial intelligence in healthcare: a primer for medical education in radiomics.
Per Med. 2022 Sep;19(5):445-456. doi: 10.2217/pme-2022-0014. Epub 2022 Jul 26.
10
An overview of the capabilities of ChatGPT for medical writing and its implications for academic integrity.
Health Info Libr J. 2023 Dec;40(4):440-446. doi: 10.1111/hir.12509. Epub 2023 Oct 8.

引用本文的文献

1
Connecting metal-organic framework synthesis to applications using multimodal machine learning.
Nat Commun. 2025 Jul 1;16(1):5642. doi: 10.1038/s41467-025-60796-0.
2
Designing a large language model for chemists.
Patterns (N Y). 2025 May 9;6(5):101264. doi: 10.1016/j.patter.2025.101264.
4
Adaptive representation of molecules and materials in Bayesian optimization.
Chem Sci. 2025 Feb 19;16(13):5464-5474. doi: 10.1039/d5sc00200a. eCollection 2025 Mar 26.
5
Explainable Synthesizability Prediction of Inorganic Crystal Polymorphs Using Large Language Models.
Angew Chem Int Ed Engl. 2025 May;64(19):e202423950. doi: 10.1002/anie.202423950. Epub 2025 Mar 22.
6
An active representation learning method for reaction yield prediction with small-scale data.
Commun Chem. 2025 Feb 10;8(1):42. doi: 10.1038/s42004-025-01434-0.
7
Adapting hybrid density functionals with machine learning.
Sci Adv. 2025 Jan 31;11(5):eadt7769. doi: 10.1126/sciadv.adt7769.
8
Identify structures underlying out-of-equilibrium reaction networks with random graph analysis.
Chem Sci. 2025 Jan 8;16(7):3099-3106. doi: 10.1039/d4sc05234j. eCollection 2025 Feb 12.
9
Computer-Aided Retrosynthesis for Greener and Optimal Total Synthesis of a Helicase-Primase Inhibitor Active Pharmaceutical Ingredient.
JACS Au. 2024 Oct 2;4(11):4263-4272. doi: 10.1021/jacsau.4c00624. eCollection 2024 Nov 25.

本文引用的文献

1
Revolutionizing drug formulation development: The increasing impact of machine learning.
Adv Drug Deliv Rev. 2023 Nov;202:115108. doi: 10.1016/j.addr.2023.115108. Epub 2023 Sep 27.
2
In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science.
J Am Chem Soc. 2023 Oct 11;145(40):21699-21716. doi: 10.1021/jacs.3c04783. Epub 2023 Sep 27.
4
The Hitchhiker's Guide to Deep Learning Driven Generative Chemistry.
ACS Med Chem Lett. 2023 Jun 30;14(7):901-915. doi: 10.1021/acsmedchemlett.3c00041. eCollection 2023 Jul 13.
5
The case for data science in experimental chemistry: examples and recommendations.
Nat Rev Chem. 2022 May;6(5):357-370. doi: 10.1038/s41570-022-00382-w. Epub 2022 Apr 21.
6
Organic reactivity from mechanism to machine learning.
Nat Rev Chem. 2021 Apr;5(4):240-255. doi: 10.1038/s41570-021-00260-x. Epub 2021 Mar 16.
7
Self-driving laboratories: A paradigm shift in nanomedicine development.
Matter. 2023 Apr 5;6(4):1071-1081. doi: 10.1016/j.matt.2023.02.007. Epub 2023 Mar 8.
8
Computer-aided multi-objective optimization in small molecule discovery.
Patterns (N Y). 2023 Feb 10;4(2):100678. doi: 10.1016/j.patter.2023.100678.
9
A Brief Introduction to Chemical Reaction Optimization.
Chem Rev. 2023 Mar 22;123(6):3089-3126. doi: 10.1021/acs.chemrev.2c00798. Epub 2023 Feb 23.
10
Transition1x - a dataset for building generalizable reactive machine learning potentials.
Sci Data. 2022 Dec 24;9(1):779. doi: 10.1038/s41597-022-01870-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验