Back Seoin, Aspuru-Guzik Alán, Ceriotti Michele, Gryn'ova Ganna, Grzybowski Bartosz, Gu Geun Ho, Hein Jason, Hippalgaonkar Kedar, Hormázabal Rodrigo, Jung Yousung, Kim Seonah, Kim Woo Youn, Moosavi Seyed Mohamad, Noh Juhwan, Park Changyoung, Schrier Joshua, Schwaller Philippe, Tsuda Koji, Vegge Tejs, von Lilienfeld O Anatole, Walsh Aron
Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University Seoul Republic of Korea
Departments of Chemistry, Computer Science, University of Toronto St. George Campus Toronto ON Canada.
Digit Discov. 2023 Dec 6;3(1):23-33. doi: 10.1039/d3dd00213f. eCollection 2024 Jan 17.
In light of the pressing need for practical materials and molecular solutions to renewable energy and health problems, to name just two examples, one wonders how to accelerate research and development in the chemical sciences, so as to address the time it takes to bring materials from initial discovery to commercialization. Artificial intelligence (AI)-based techniques, in particular, are having a transformative and accelerating impact on many if not most, technological domains. To shed light on these questions, the authors and participants gathered in person for the ASLLA Symposium on the theme of 'Accelerated Chemical Science with AI' at Gangneung, Republic of Korea. We present the findings, ideas, comments, and often contentious opinions expressed during four panel discussions related to the respective general topics: 'Data', 'New applications', 'Machine learning algorithms', and 'Education'. All discussions were recorded, transcribed into text using Open AI's Whisper, and summarized using LG AI Research's EXAONE LLM, followed by revision by all authors. For the broader benefit of current researchers, educators in higher education, and academic bodies such as associations, publishers, librarians, and companies, we provide chemistry-specific recommendations and summarize the resulting conclusions.
鉴于对可再生能源和健康问题(仅举两个例子)的实用材料和分子解决方案的迫切需求,人们不禁要问如何加速化学科学的研发,以缩短从材料最初发现到商业化所需的时间。特别是基于人工智能(AI)的技术,正在对许多(即便不是大多数)技术领域产生变革性和加速性的影响。为了阐明这些问题,作者和参与者齐聚韩国江陵,亲自参加了以“利用人工智能加速化学科学”为主题的ASLLA研讨会。我们展示了在与各自一般主题相关的四次小组讨论中表达的研究结果、想法、评论以及常常有争议的观点,这些主题分别是:“数据”、“新应用”、“机器学习算法”和“教育”。所有讨论都进行了记录,使用OpenAI的Whisper转录为文本,并使用LG人工智能研究公司的EXAONE大语言模型进行总结,随后由所有作者进行修订。为了让当前的研究人员、高等教育工作者以及诸如协会、出版商、图书馆员和公司等学术机构更广泛地受益,我们提供了针对化学领域的建议并总结了所得出的结论。