Suppr超能文献

利用肌萎缩侧索硬化症的转录组信号来识别新型药物并增强风险预测。

Harnessing transcriptomic signals for amyotrophic lateral sclerosis to identify novel drugs and enhance risk prediction.

作者信息

Pain Oliver, Jones Ashley, Al Khleifat Ahmad, Agarwal Devika, Hramyka Dzmitry, Karoui Hajer, Kubica Jędrzej, Llewellyn David J, Ranson Janice M, Yao Zhi, Iacoangeli Alfredo, Al-Chalabi Ammar

机构信息

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom.

出版信息

Heliyon. 2024 Jul 29;10(15):e35342. doi: 10.1016/j.heliyon.2024.e35342. eCollection 2024 Aug 15.

Abstract

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study integrates common genetic association results from the latest ALS genome-wide association study (GWAS) summary statistics with functional genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics.

METHODS

Genes associated with ALS were identified using GWAS summary statistic methodology including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study (TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, age at onset, and survival.

RESULTS

SNP-based fine-mapping, TWAS and PWAS identified 118 genes associated with ALS, with TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified six drugs significantly enriched for interactions with ALS associated genes, though directionality could not be determined. Additionally, drug class enrichment analysis showed gene signatures linked to calcium channel blockers may reduce ALS risk, whereas antiepileptic drugs may increase ALS risk. Across the two observed expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (  = 5.1 %; -value = 3.2 × 10) and clinical characteristics.

CONCLUSIONS

Functionally-informed analyses of ALS GWAS summary statistics identified novel mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and enabled statistically significant prediction of ALS risk.

摘要

引言

肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病。本研究将最新的ALS全基因组关联研究(GWAS)汇总统计中的常见基因关联结果与功能基因组注释相结合,旨在深入了解ALS风险位点的机制,推断药物重新利用的机会,并加强对ALS风险和临床特征的预测。

方法

使用GWAS汇总统计方法确定与ALS相关的基因,包括基于SuSiE SNP的精细定位以及转录组和蛋白质组全关联研究(TWAS/PWAS)分析。通过多种方法,将基因关联与DrugTargetor药物-基因相互作用数据库整合,以确定可重新用于治疗ALS的药物。此外,将TWAS中的ALS基因关联与两个外部ALS病例对照数据集中观察到的血液表达相结合,计算多转录组评分,并评估其在预测ALS风险和临床特征(包括发病部位、发病年龄和生存率)方面的效用。

结果

基于SNP的精细定位、TWAS和PWAS确定了118个与ALS相关的基因,TWAS和PWAS提供了新的机制见解。药物重新利用分析确定了六种与ALS相关基因相互作用显著富集的药物,尽管无法确定其方向性。此外,药物类别富集分析表明,与钙通道阻滞剂相关的基因特征可能会降低ALS风险,而抗癫痫药物可能会增加ALS风险。在两个观察到的表达目标样本中,ALS多转录组评分显著预测了ALS风险( = 5.1%;-值 = 3.2 × 10)和临床特征。

结论

对ALS GWAS汇总统计进行功能信息分析,为ALS病因学提供了新的机制见解,突出了几个治疗研究途径,并能够对ALS风险进行具有统计学意义的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e90c/11336650/e37e583691aa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验