Küçükali Fahri, Hill Elizabeth, Watzeels Tijs, Hummerich Holger, Campbell Tracy, Darwent Lee, Collins Steven, Stehmann Christiane, Kovacs Gabor G, Geschwind Michael D, Frontzek Karl, Budka Herbert, Gelpi Ellen, Aguzzi Adriano, van der Lee Sven J, van Duijn Cornelia M, Liberski Pawel P, Calero Miguel, Sanchez-Juan Pascual, Bouaziz-Amar Elodie, Laplanche Jean-Louis, Haïk Stéphane, Brandel Jean-Phillipe, Mammana Angela, Capellari Sabina, Poleggi Anna, Ladogana Anna, Tiple Dorina, Zafar Saima, Booth Stephanie, Jansen Gerard H, Areškevičiūtė Aušrinė, Lund Eva Løbner, Glisic Katie, Parchi Piero, Hermann Peter, Zerr Inga, Safar Jiri, Gambetti Pierluigi, Appleby Brian S, Collinge John, Sleegers Kristel, Mead Simon
Complex Genetics of Alzheimer's Disease group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
Brain. 2025 Jan 27. doi: 10.1093/brain/awaf032.
Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance. Herein we sought to further develop our understanding of the factors that confer risk of sCJD using a systematic gene prioritization and functional interpretation pipeline based on multiomic integrative analyses. We integrated the published sCJD genome-wide association study (GWAS) summary statistics with publicly available bulk brain and brain cell type gene and protein expression datasets. We performed multiple transcriptome and proteome-wide association studies (TWAS & PWAS) and Bayesian genetic colocalization analyses between sCJD risk association signals and multiple brain molecular quantitative trait loci signals. We then applied our systematic gene prioritization pipeline on the obtained results and nominated prioritized sCJD risk genes with risk-associated molecular mechanisms in a transcriptome and proteome-wide manner. Genetic upregulation of both gene and protein expression of syntaxin-6 (STX6) in the brain was associated with sCJD risk in multiple datasets, with a risk-associated gene expression regulation specific to oligodendrocytes. Similarly, increased gene and protein expression of protein disulfide isomerase family A member 4 (PDIA4), involved in the unfolded protein response, was linked to increased disease risk, particularly in excitatory neurons. Protein expression of mesencephalic astrocyte derived neurotrophic factor (MANF), involved in protection against endoplasmic reticulum stress and sulfatide binding (linking to the enzyme in the final step of sulfatide synthesis, encoded by sCJD risk gene GAL3ST1), was identified as protective against sCJD. In total 32 genes were prioritized into two tiers based on the level of evidence and confidence for further studies. This study provides insights into the genetically-associated molecular mechanisms underlying sCJD susceptibility and prioritizes several specific hypotheses for exploration beyond the prion protein itself and beyond the previously highlighted sCJD risk loci through the newly prioritized sCJD risk genes and mechanisms. These findings highlight the importance of glial cells, sulfatides and the excitatory neuron unfolded protein response in sCJD pathogenesis.
朊病毒是错误折叠的朊病毒蛋白聚集体,可导致多种致命且可传播的神经退行性疾病,人类中最常见的表型是散发性克雅氏病(sCJD)。除了朊病毒蛋白本身的变异外,分子风险因素尚不清楚。朊病毒和类朊病毒机制被认为是常见神经退行性疾病的基础,这意味着对其机制的阐明可能具有广泛的相关性。在此,我们试图通过基于多组学综合分析的系统基因优先级排序和功能解释流程,进一步加深对赋予sCJD风险的因素的理解。我们将已发表的sCJD全基因组关联研究(GWAS)汇总统计数据与公开可用的大脑整体及脑细胞类型基因和蛋白质表达数据集进行整合。我们进行了多项转录组和蛋白质组全关联研究(TWAS和PWAS),以及sCJD风险关联信号与多个大脑分子数量性状位点信号之间的贝叶斯遗传共定位分析。然后,我们将系统基因优先级排序流程应用于所得结果,以转录组和蛋白质组全的方式提名具有风险相关分子机制的sCJD风险优先级基因。大脑中 syntaxin-6(STX6)基因和蛋白质表达的遗传上调在多个数据集中与sCJD风险相关,且存在少突胶质细胞特有的风险相关基因表达调控。同样,参与未折叠蛋白反应的蛋白质二硫键异构酶家族A成员4(PDIA4)的基因和蛋白质表达增加与疾病风险增加相关,尤其是在兴奋性神经元中。中脑星形胶质细胞衍生的神经营养因子(MANF)的蛋白质表达参与内质网应激保护和硫脂结合(与硫脂合成最后一步的酶相关,由sCJD风险基因GAL3ST1编码),被确定为对sCJD有保护作用。根据证据水平和可信度,总共32个基因被分为两层以供进一步研究。本研究深入探讨了sCJD易感性的遗传相关分子机制,并通过新确定优先级的sCJD风险基因和机制,提出了几个超越朊病毒蛋白本身和先前突出的sCJD风险位点的具体探索假设。这些发现突出了胶质细胞、硫脂和兴奋性神经元未折叠蛋白反应在sCJD发病机制中的重要性。