Suppr超能文献

利用全基因组关联研究汇总统计数据对神经精神疾病中的共享基因座进行统计学检验。

Statistical examination of shared loci in neuropsychiatric diseases using genome-wide association study summary statistics.

作者信息

Spargo Thomas P, Gilchrist Lachlan, Hunt Guy P, Dobson Richard J B, Proitsi Petroula, Al-Chalabi Ammar, Pain Oliver, Iacoangeli Alfredo

机构信息

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom.

Department of Biostatistics and Health Informatics, King's College London, London, United Kingdom.

出版信息

Elife. 2024 Dec 17;12:RP88768. doi: 10.7554/eLife.88768.

Abstract

Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant 'local' genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson's disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.

摘要

持续的方法学进展使得能够采用多种统计方法来分析全基因组关联研究的汇总统计数据。特定区域内的遗传相关性分析为识别多效性提供了一种新策略。具有显著“局部”遗传相关性的基因组区域可使用最先进的统计精细定位和变异共定位方法进行进一步研究。我们探索了一种全基因组局部遗传相关性分析方法在识别候选神经精神疾病(阿尔茨海默病(AD)、肌萎缩侧索硬化症(ALS)、额颞叶痴呆、帕金森病和精神分裂症)之间遗传重叠方面的效用。相关性分析确定了几种性状之间的关联,其中大多数是人类白细胞抗原区域的基因座。共定位分析表明,这些基因座中与疾病相关的变异在不同性状之间往往存在差异,并且在一个基因座中,表明ALS和AD之间存在共同的因果变异。我们的研究确定了可能在多种神经精神疾病中起作用的候选基因座,并表明尽管存在共享基因座,但不同疾病之间存在不同机制的作用。为本研究设计的精细定位和共定位分析方案已在一个灵活的分析流程中实施,该流程生成HTML报告,可在以下网址获取:https://github.com/ThomasPSpargo/COLOC-reporter

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e0a/11651651/1b199b9dfd67/elife-88768-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验