Suppr超能文献

用于水下图像中鱼类物种自动识别的增强深度学习模型。

Enhanced deep learning models for automatic fish species identification in underwater imagery.

作者信息

D Siri, Vellaturi Gopikrishna, Shaik Ibrahim Shaik Hussain, Molugu Srikanth, Desanamukula Venkata Subbaiah, Kocherla Raviteja, Vatambeti Ramesh

机构信息

Department of CSE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India.

Department of Information Technology, MLR Institute of Technology, Hyderabad, India.

出版信息

Heliyon. 2024 Jul 27;10(15):e35217. doi: 10.1016/j.heliyon.2024.e35217. eCollection 2024 Aug 15.

Abstract

Underwater cameras are crucial in marine ecology, but their data management needs automatic species identification. This study proposes a two-stage deep learning approach. First, the Unsharp Mask Filter (UMF) preprocesses images. Then, an enhanced region-based fully convolutional network (R-FCN) detects fish using two-order integrals for position-sensitive score maps and precise region of interest (PS-Pr-RoI) pooling for accuracy. The second stage integrates ShuffleNetV2 with the Squeeze and Excitation (SE) module, forming the Improved ShuffleNetV2 model, enhancing classification focus. Hyperparameters are optimized with the Enhanced Northern Goshawk Optimization Algorithm (ENGO). The improved R-FCN model achieves 99.94 % accuracy, 99.58 % precision and recall, and a 99.27 % F-measure on the Fish4knowledge dataset. Similarly, the ENGO-based ShuffleNetV2 model, evaluated on the same dataset, shows 99.93 % accuracy, 99.19 % precision, 98.29 % recall, and a 98.71 % F-measure, highlighting its superior classification accuracy.

摘要

水下相机在海洋生态学中至关重要,但其数据管理需要自动物种识别。本研究提出了一种两阶段深度学习方法。首先,非锐化掩模滤波器(UMF)对图像进行预处理。然后,一个增强的基于区域的全卷积网络(R-FCN)使用用于位置敏感得分图的二阶积分和用于提高准确性的精确感兴趣区域(PS-Pr-RoI)池化来检测鱼类。第二阶段将ShuffleNetV2与挤压与激励(SE)模块集成,形成改进的ShuffleNetV2模型,增强分类聚焦。使用增强的苍鹰优化算法(ENGO)对超参数进行优化。改进的R-FCN模型在Fish4knowledge数据集上实现了99.94%的准确率、99.58%的精确率和召回率以及99.27%的F值。同样,在同一数据集上评估的基于ENGO的ShuffleNetV2模型显示出99.93%的准确率、99.19%的精确率、98.29%的召回率和98.71%的F值,突出了其卓越的分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55f7/11336429/434b94b0a5c6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验