Suppr超能文献

利用拉曼光谱成像对含锂矿物进行无监督且可解释的鉴别。

Unsupervised and interpretable discrimination of lithium-bearing minerals with Raman spectroscopy imaging.

作者信息

Guimarães Diana, Monteiro Catarina, Teixeira Joana, Lopes Tomás, Capela Diana, Dias Filipa, Lima Alexandre, Jorge Pedro A S, Silva Nuno A

机构信息

Center for Applied Photonics, INESC TEC, Rua do Campo Alegre 687, Porto, 4169-007, Portugal.

Departamento de Física e Astrofísica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto, 4169-007, Portugal.

出版信息

Heliyon. 2024 Aug 3;10(15):e35632. doi: 10.1016/j.heliyon.2024.e35632. eCollection 2024 Aug 15.

Abstract

As lithium-bearing minerals become critical raw materials for the field of energy storage and advanced technologies, the development of tools to accurately identify and differentiate these minerals is becoming essential for efficient resource exploration, mining, and processing. Conventional methods for identifying ore minerals often depend on the subjective observation skills of experts, which can lead to errors, or on expensive and time-consuming techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Optical Emission Spectroscopy (ICP-OES). More recently, Raman Spectroscopy (RS) has emerged as a powerful tool for characterizing and identifying minerals due to its ability to provide detailed molecular information. This technique excels in scenarios where minerals have similar elemental content, such as petalite and spodumene, by offering distinct vibrational information that allows for clear differentiation between such minerals. Considering this case study and its particular relevance to the lithium-mining industry, this manuscript reports the development of an unsupervised methodology for lithium-mineral identification based on Raman Imaging. The deployed machine-learning solution provides accurate and interpretable results using the specific bands expected for each mineral. Furthermore, its robustness is tested with additional blind samples, providing insights into the unique spectral signatures and analytical features that enable reliable mineral identification.

摘要

随着含锂矿物成为储能和先进技术领域的关键原材料,开发能够准确识别和区分这些矿物的工具对于高效的资源勘探、开采和加工变得至关重要。传统的矿石矿物识别方法通常依赖于专家的主观观察技能,这可能会导致误差,或者依赖于昂贵且耗时的技术,如电感耦合等离子体质谱法(ICP-MS)或光发射光谱法(ICP-OES)。最近,拉曼光谱(RS)因其能够提供详细的分子信息而成为表征和识别矿物的强大工具。在矿物具有相似元素含量的情况下,如透锂长石和锂辉石,该技术通过提供独特的振动信息,能够清晰地区分这些矿物,表现出色。考虑到这个案例研究及其与锂矿开采行业的特殊相关性,本文报告了一种基于拉曼成像的无监督锂矿物识别方法的开发。所部署的机器学习解决方案利用每种矿物预期的特定波段提供准确且可解释的结果。此外,通过额外的盲样测试了其稳健性,深入了解了能够实现可靠矿物识别的独特光谱特征和分析特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bfe/11336862/306da74823ef/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验