Lee Brian L, Rout Manoj, Dong Ying, Lipfert Matthias, Berjanskii Mark, Shahin Fatemeh, Bhattacharyya Dipanjan, Selim Alyaa, Mandal Rupasri, Wishart David S
Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada.
Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
ACS Food Sci Technol. 2024 Jul 22;4(8):1937-1949. doi: 10.1021/acsfoodscitech.4c00298. eCollection 2024 Aug 16.
We report the development of MagMet-W (magnetic resonance for metabolomics of wine), a software program that can automatically determine the chemical composition of wine via H nuclear magnetic resonance (NMR) spectroscopy. MagMet-W is an extension of MagMet developed for the automated metabolomic analysis of human serum by H NMR. We identified 70 compounds suitable for inclusion into MagMet-W. We then obtained 1D H NMR reference spectra of the pure compounds at 700 MHz and incorporated these spectra into the MagMet-W compound library. The processing of the wine NMR spectra and profiling of the 70 wine compounds were then optimized based on manual H NMR analysis. MagMet-W can automatically identify 70 wine compounds in most wine samples and can quantify them to 10-15% of the manually determined concentrations, and it can analyze multiple spectra simultaneously, at 10 min per spectrum. The MagMet-W Web server is available at https://www.magmet.ca.
我们报告了MagMet-W(葡萄酒代谢组学磁共振技术)的开发情况,这是一个可通过氢核磁共振(NMR)光谱自动测定葡萄酒化学成分的软件程序。MagMet-W是为通过氢核磁共振对人血清进行自动代谢组学分析而开发的MagMet的扩展版本。我们鉴定出70种适合纳入MagMet-W的化合物。然后,我们在700兆赫下获得了这些纯化合物的一维氢核磁共振参考光谱,并将这些光谱纳入MagMet-W化合物库。随后,基于手动氢核磁共振分析,对葡萄酒核磁共振光谱的处理和70种葡萄酒化合物的分析进行了优化。MagMet-W能够在大多数葡萄酒样品中自动识别70种葡萄酒化合物,并且能够将它们的定量结果精确到手动测定浓度的10%至15%,而且它能够同时分析多个光谱,每个光谱只需10分钟。MagMet-W网络服务器可通过https://www.magmet.ca访问。