Velumani Kadhirmathiyan, John Arun, Shaik Mohammed Rafi, Hussain Shaik Althaf, Guru Ajay, Issac Praveen Kumar
Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India.
Institute of Bioinformatics, Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India.
3 Biotech. 2024 Sep;14(9):205. doi: 10.1007/s13205-024-04050-2. Epub 2024 Aug 19.
UNLABELLED: Diabetic mellitus (DM) is characterized by hyperglycaemia and defective macromolecular metabolism, arising from insulin resistance or lack of insulin production. The present study investigates the potential of artemisinin, a sesquiterpene lactone isolated from , to exert anti-diabetic and antioxidant effects through modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. Our computational analyses demonstrated a high binding affinity of artemisinin with proteins belonging to the PI3K/AKT signalling cascade. α-Amylase and α-glucosidase studies revealed a notable increase in inhibition percentages with artemisinin treatment across concentrations ranging from 10 to 160 µM. A similar significant ( < 0.05) dose-dependent inhibition of free radicals was observed for the in vitro anti-oxidant assays. Further, toxicological profiling of artemisinin in the in vivo zebrafish embryo-larvae model from 4 to 96 h post-fertilization (hpf) did not exhibit any harmful repercussions. In addition, gene expression investigations confirmed artemisinin's potential mechanism in modulating hyperglycaemia and oxidative stress through the regulation of the PI3K/AKT pathway. Overall, our investigation suggests that artemisinin can be used as a therapeutic intervention for diabetes and oxidative stress, opening up opportunities for future investigation in clinical settings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-04050-2.
未标注:糖尿病(DM)的特征是高血糖和大分子代谢缺陷,其起因是胰岛素抵抗或胰岛素分泌不足。本研究调查了从[来源未提及]中分离出的倍半萜内酯青蒿素通过调节磷酸肌醇3激酶(PI3K)/蛋白激酶B(AKT)信号通路发挥抗糖尿病和抗氧化作用的潜力。我们的计算分析表明青蒿素与PI3K/AKT信号级联中的蛋白质具有高结合亲和力。α-淀粉酶和α-葡萄糖苷酶研究显示,在10至160µM的浓度范围内,青蒿素处理后的抑制百分比显著增加。体外抗氧化试验也观察到类似的显著(<0.05)剂量依赖性自由基抑制作用。此外,在受精后4至96小时(hpf)的体内斑马鱼胚胎-幼虫模型中对青蒿素进行的毒理学分析未显示任何有害影响。此外,基因表达研究证实了青蒿素通过调节PI3K/AKT途径调节高血糖和氧化应激的潜在机制。总体而言,我们的研究表明青蒿素可用作糖尿病和氧化应激的治疗干预手段,为未来的临床研究开辟了机会。 补充信息:在线版本包含可在10.1007/s13205-024-04050-2获取的补充材料。
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2017-6-6
Cochrane Database Syst Rev. 2021-4-19
Hum Reprod Open. 2025-7-10
Cochrane Database Syst Rev. 2014
Front Mol Neurosci. 2025-4-1
Pharmaceuticals (Basel). 2024-7-15
Molecules. 2024-3-10
Int J Mol Sci. 2023-5-22
Front Neural Circuits. 2023