Shi Jiangbo, Li Chen, Gong Tieliang, Wang Chunbao, Fu Huazhu
IEEE Trans Med Imaging. 2025 Mar;44(3):1218-1229. doi: 10.1109/TMI.2024.3485120. Epub 2025 Mar 17.
Multiple instance learning (MIL) has emerged as a prominent paradigm for processing the whole slide image with pyramid structure and giga-pixel size in digital pathology. However, existing attention-based MIL methods are primarily trained on the image modality and a pre-defined label set, leading to limited generalization and interpretability. Recently, vision language models (VLM) have achieved promising performance and transferability, offering potential solutions to the limitations of MIL-based methods. Pathological diagnosis is an intricate process that requires pathologists to examine the WSI step-by-step. In the field of natural language process, the chain-of-thought (CoT) prompting method is widely utilized to imitate the human reasoning process. Inspired by the CoT prompt and pathologists' clinic knowledge, we propose a chain-of-diagnosis prompting multiple instance learning (CoD-MIL) framework for whole slide image classification. Specifically, the chain-of-diagnosis text prompt decomposes the complex diagnostic process in WSI into progressive sub-processes from low to high magnification. Additionally, we propose a text-guided contrastive masking module to accurately localize the tumor region by masking the most discriminative instances and introducing the guidance of normal tissue texts in a contrastive way. Extensive experiments conducted on three real-world subtyping datasets demonstrate the effectiveness and superiority of CoD-MIL.
多实例学习(MIL)已成为数字病理学中处理具有金字塔结构和数十亿像素大小的全切片图像的一种突出范式。然而,现有的基于注意力的MIL方法主要是在图像模态和预定义标签集上进行训练,导致泛化能力和可解释性有限。最近,视觉语言模型(VLM)取得了有前景的性能和可迁移性,为基于MIL的方法的局限性提供了潜在解决方案。病理诊断是一个复杂的过程,需要病理学家逐步检查全切片图像(WSI)。在自然语言处理领域,思维链(CoT)提示方法被广泛用于模仿人类推理过程。受CoT提示和病理学家临床知识的启发,我们提出了一种用于全切片图像分类的诊断链提示多实例学习(CoD-MIL)框架。具体而言,诊断链文本提示将WSI中的复杂诊断过程从低倍到高倍分解为渐进的子过程。此外,我们提出了一个文本引导的对比掩码模块,通过掩盖最具区分性的实例并以对比的方式引入正常组织文本的指导来准确地定位肿瘤区域。在三个真实世界的亚型数据集上进行的大量实验证明了CoD-MIL的有效性和优越性。