Suppr超能文献

提高心力衰竭患者远程监测中的依从性并收集症状特异性生物特征信号:一项随机对照试验。

Increasing adherence and collecting symptom-specific biometric signals in remote monitoring of heart failure patients: a randomized controlled trial.

作者信息

Mohapatra Sukanya, Issa Mirna, Ivezic Vedrana, Doherty Rose, Marks Stephanie, Lan Esther, Chen Shawn, Rozett Keith, Cullen Lauren, Reynolds Wren, Rocchio Rose, Fonarow Gregg C, Ong Michael K, Speier William F, Arnold Corey W

机构信息

Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90024, United States.

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90024, United States.

出版信息

J Am Med Inform Assoc. 2025 Jan 1;32(1):181-192. doi: 10.1093/jamia/ocae221.

Abstract

OBJECTIVES

Mobile health (mHealth) regimens can improve health through the continuous monitoring of biometric parameters paired with appropriate interventions. However, adherence to monitoring tends to decay over time. Our randomized controlled trial sought to determine: (1) if a mobile app with gamification and financial incentives significantly increases adherence to mHealth monitoring in a population of heart failure patients; and (2) if activity data correlate with disease-specific symptoms.

MATERIALS AND METHODS

We recruited individuals with heart failure into a prospective 180-day monitoring study with 3 arms. All 3 arms included monitoring with a connected weight scale and an activity tracker. The second arm included an additional mobile app with gamification, and the third arm included the mobile app and a financial incentive awarded based on adherence to mobile monitoring.

RESULTS

We recruited 111 heart failure patients into the study. We found that the arm including the financial incentive led to significantly higher adherence to activity tracker (95% vs 72.2%, P = .01) and weight (87.5% vs 69.4%, P = .002) monitoring compared to the arm that included the monitoring devices alone. Furthermore, we found a significant correlation between daily steps and daily symptom severity.

DISCUSSION AND CONCLUSION

Our findings indicate that mobile apps with added engagement features can be useful tools for improving adherence over time and may thus increase the impact of mHealth-driven interventions. Additionally, activity tracker data can provide passive monitoring of disease burden that may be used to predict future events.

摘要

目的

移动健康(mHealth)方案可通过持续监测生物特征参数并辅以适当干预措施来改善健康状况。然而,对监测的依从性往往会随着时间推移而下降。我们的随机对照试验旨在确定:(1)一款具有游戏化元素和经济激励措施的移动应用程序是否能显著提高心力衰竭患者群体对移动健康监测的依从性;(2)活动数据是否与特定疾病症状相关。

材料与方法

我们招募心力衰竭患者参与一项为期180天的前瞻性监测研究,分为三组。所有三组均包括使用联网体重秤和活动追踪器进行监测。第二组额外增加了一款具有游戏化元素的移动应用程序,第三组则包括该移动应用程序以及根据对移动监测的依从性给予的经济激励。

结果

我们招募了111名心力衰竭患者参与该研究。我们发现,与仅包括监测设备的组相比,包含经济激励措施的组在活动追踪器监测(95%对72.2%,P = 0.01)和体重监测(87.5%对69.4%,P = 0.002)方面的依从性显著更高。此外,我们发现每日步数与每日症状严重程度之间存在显著相关性。

讨论与结论

我们的研究结果表明,具有增强参与功能的移动应用程序可成为随着时间推移提高依从性的有用工具,从而可能增加移动健康驱动干预措施的影响。此外,活动追踪器数据可提供对疾病负担的被动监测,可用于预测未来事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad04/11648719/1b7233d3c250/ocae221f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验