Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
J Am Chem Soc. 2024 Sep 4;146(35):24271-24287. doi: 10.1021/jacs.4c04406. Epub 2024 Aug 22.
Hyoscyamine 6β-hydroxylase (H6H) is an iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase that produces the prolifically administered antinausea drug, scopolamine. After its namesake hydroxylation reaction, H6H then couples the newly installed C6 oxygen to C7 to produce the drug's epoxide functionality. Oxoiron(IV) (ferryl) intermediates initiate both reactions by cleaving C-H bonds, but it remains unclear how the enzyme switches the target site and promotes (C6)O-C7 coupling in preference to C7 hydroxylation in the second step. In one possible epoxidation mechanism, the C6 oxygen would─analogously to mechanisms proposed for the Fe/2OG halogenases and, in our more recent study, -acetylnorloline synthase (LolO)─coordinate as alkoxide to the C7-H-cleaving ferryl intermediate to enable alkoxyl coupling to the ensuing C7 radical. Here, we provide structural and kinetic evidence that H6H does not employ substrate coordination or repositioning for the epoxidation step but instead exploits the distinct spatial dependencies of competitive C-H cleavage (C6 vs C7) and C-O-coupling (oxygen rebound vs cyclization) steps to promote the two-step sequence. Structural comparisons of ferryl-mimicking vanadyl complexes of wild-type H6H and a variant that preferentially 7-hydroxylates instead of epoxidizing 6β-hydroxyhyoscyamine suggest that a modest (∼10°) shift in the Fe-O-H(C7) approach angle is sufficient to change the outcome. The 7-hydroxylation:epoxidation partition ratios of both proteins increase more than 5-fold in HO, reflecting an epoxidation-specific requirement for cleavage of the alcohol O-H bond, which, unlike in the LolO oxacyclization, is not accomplished by iron coordination in advance of C-H cleavage.
莨菪碱 6β-羟化酶(H6H)是一种含铁(II)和 2-氧代戊二酸依赖性(Fe/2OG)的加氧酶,可产生广泛应用的止吐药物东莨菪碱。在其同源羟化反应后,H6H 将新安装的 C6 氧与 C7 结合,生成药物的环氧化物官能团。氧代铁(IV)(铁酰基)中间体通过切割 C-H 键引发这两个反应,但仍不清楚该酶如何切换靶位并促进(C6)O-C7 偶联,而不是在第二步中优先进行 C7 羟化。在一种可能的环氧化机制中,C6 氧─类似于 Fe/2OG 卤化酶提出的机制,以及在我们最近的研究中,-乙酰基降诺洛林合酶(LolO)─作为烷氧基与 C7-H 断裂的铁酰基中间体配位,以实现烷氧基与随后的 C7 自由基的偶联。在这里,我们提供了结构和动力学证据,表明 H6H 不采用底物配位或重定位来进行环氧化步骤,而是利用竞争性 C-H 断裂(C6 与 C7)和 C-O 偶联(氧回弹与环化)步骤的独特空间依赖性来促进两步序列。野生型 H6H 和一种优先进行 7-羟化而不是 6β-羟化莨菪碱的变体的铁酰基模拟钒氧复合物的结构比较表明,Fe-O-H(C7)接近角的适度(∼10°)变化足以改变结果。两种蛋白质的 7-羟化酶:环氧化分配比都在 HO 中增加了 5 倍以上,反映了环氧化对醇 O-H 键裂解的特定要求,与 LolO 氧环化不同,该键裂解不是通过铁在 C-H 裂解之前的配位来完成的。