Tran Xuan Quy, Yamamoto Tomokazu, Aso Kohei, Yoshioka Satoru, Kusada Kohei, Kitagawa Hiroshi, Haneda Masaaki, Kawami Youichirou, Matsumura Syo
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Nano Lett. 2024 Sep 4;24(35):11108-11115. doi: 10.1021/acs.nanolett.4c03356. Epub 2024 Aug 22.
An advanced materials solution utilizing the concept of "smart catalysts" could be a game changer for today's automotive emission control technology, enabling the efficient use of precious metals via their two-way switching between metallic nanoparticle forms and ionic states in the host perovskite lattice as a result of the cyclical oxidizing/reducing atmospheres. However, direct evidence for such processes remains scarce; therefore, the underlying mechanism has been an unsettled debate. Here, we use advanced scanning transmission electron microscopy to reveal the atomic-scale behaviors for a LaFePdO-supported Ir-Pd-Ru nanocatalyst under fluctuating redox conditions, thereby proving the reversible dissolution/exsolution for Ir and Ru but with a limited occurrence for Pd. Despite such selective dissolution during oxidation, all three elements remain cooperatively alloyed in the subsequent reduction, which is a key factor in preserving the catalytic activity of the ternary nanoalloy while displaying its self-regenerating functionality and control of particle agglomeration.
一种利用“智能催化剂”概念的先进材料解决方案可能会改变当今汽车排放控制技术的格局,由于周期性的氧化/还原气氛,贵金属能够在主体钙钛矿晶格中在金属纳米颗粒形式和离子状态之间进行双向切换,从而实现贵金属的高效利用。然而,此类过程的直接证据仍然稀少;因此,其潜在机制一直是一个未解决的争论点。在这里,我们使用先进的扫描透射电子显微镜来揭示LaFePdO负载的Ir-Pd-Ru纳米催化剂在波动的氧化还原条件下的原子尺度行为,从而证明Ir和Ru的可逆溶解/析出,但Pd的发生有限。尽管在氧化过程中存在这种选择性溶解,但在随后的还原过程中,所有三种元素仍保持协同合金化,这是保持三元纳米合金催化活性的关键因素,同时展现其自再生功能并控制颗粒团聚。