Suppr超能文献

用于风力叶片回收的生物质衍生热固性材料的制造与测试。

Manufacture and testing of biomass-derivable thermosets for wind blade recycling.

作者信息

Clarke Ryan W, Rognerud Erik G, Puente-Urbina Allen, Barnes David, Murdy Paul, McGraw Michael L, Newkirk Jimmy M, Beach Ryan, Wrubel Jacob A, Hamernik Levi J, Chism Katherine A, Baer Andrea L, Beckham Gregg T, Murray Robynne E, Rorrer Nicholas A

机构信息

Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.

BOTTLE Consortium, Golden, CO 80401, USA.

出版信息

Science. 2024 Aug 23;385(6711):854-860. doi: 10.1126/science.adp5395. Epub 2024 Aug 22.

Abstract

Wind energy is helping to decarbonize the electrical grid, but wind blades are not recyclable, and current end-of-life management strategies are not sustainable. To address the material recyclability challenges in sustainable energy infrastructure, we introduce scalable biomass-derivable polyester covalent adaptable networks and corresponding fiber-reinforced composites for recyclable wind blade fabrication. Through experimental and computational studies, including vacuum-assisted resin-transfer molding of a 9-meter wind blade prototype, we demonstrate drop-in technological readiness of this material with existing manufacture techniques, superior properties relative to incumbent materials, and practical end-of-life chemical recyclability. Most notable is the counterintuitive creep suppression, outperforming industry state-of-the-art thermosets despite the dynamic cross-link topology. Overall, this report details the many facets of wind blade manufacture, encompassing chemistry, engineering, safety, mechanical analyses, weathering, and chemical recyclability, enabling a realistic path toward biomass-derivable, recyclable wind blades.

摘要

风能有助于使电网脱碳,但风力叶片不可回收,当前的报废管理策略也不可持续。为应对可持续能源基础设施中的材料可回收性挑战,我们引入了可扩展的生物质衍生聚酯共价自适应网络以及用于制造可回收风力叶片的相应纤维增强复合材料。通过实验和计算研究,包括对一个9米长风力叶片原型进行真空辅助树脂传递模塑,我们证明了这种材料与现有制造技术的无缝对接技术成熟度、相对于现有材料的优越性能以及实际的报废化学可回收性。最值得注意的是反直觉的蠕变抑制,尽管具有动态交联拓扑结构,但性能优于行业最先进的热固性材料。总体而言,本报告详细阐述了风力叶片制造的多个方面,包括化学、工程、安全、力学分析、耐候性和化学可回收性,为实现生物质衍生、可回收风力叶片提供了一条切实可行的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验