Suppr超能文献

利用旱稻合成群体进行耐铝毒的基因组选择。

Genomic selection for tolerance to aluminum toxicity in a synthetic population of upland rice.

机构信息

CIRAD, UMR AGAP Institut, Montpellier, France.

UMR AGAP institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

出版信息

PLoS One. 2024 Aug 22;19(8):e0307009. doi: 10.1371/journal.pone.0307009. eCollection 2024.

Abstract

Over half of the world's arable land is acidic, which constrains cereal production. In South America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Venezuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts have been made to breed for tolerance to aluminum toxicity using synthetic populations. The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to increase productivity for the Llanos in Colombia. In this study, we evaluated the performance of genomic prediction models to optimize the breeding scheme by hastening the development of an improved synthetic population and elite lines. We characterized 334 families at the S0:4 generation in two conditions. One condition was the control, managed with liming, while the other had high aluminum toxicity. Four traits were considered: days to flowering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain (ZN). The population presented a high tolerance to aluminum toxicity, with more than 72% of the families showing a higher yield under aluminum conditions. The performance of the families under the aluminum toxicity condition was predicted using four different models: a single-environment model and three multi-environment models. The multi-environment models differed in the way they integrated genotype-by-environment interactions. The best predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH, 0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment models ranged from 71% for YLD to 430% for FL. The selection of the best-performing families based on multi-trait indices, including the four traits mentioned above, facilitated the identification of suitable families for recombination. This information will be used to develop a new cycle of recurrent selection through genomic selection.

摘要

超过一半的世界耕地呈酸性,这限制了谷物的生产。在南美洲,由于高铝毒性水平,不同的水稻种植区(巴西的塞拉多和哥伦比亚和委内瑞拉的拉诺斯)受到特别影响。出于这个原因,人们一直在努力通过合成群体培育对铝毒性的耐受性。CIAT-CIRAD 的育种计划就是利用反复选择来提高哥伦比亚拉诺斯生产力的一个很好的例子。在这项研究中,我们评估了基因组预测模型的性能,通过加快改良合成群体和精英系的开发来优化育种方案。我们在两种条件下对 S0:4 世代的 334 个家系进行了特征描述。一种条件是对照,用石灰处理,另一种条件是高铝毒性。考虑了四个性状:开花日数(FL)、株高(PH)、籽粒产量(YLD)和抛光谷物中的锌浓度(ZN)。该群体对铝毒性具有很高的耐受性,超过 72%的家系在铝条件下表现出更高的产量。使用四种不同的模型预测了家系在铝毒性条件下的表现:单环境模型和三种多环境模型。多环境模型在整合基因型与环境互作方面有所不同。使用多环境模型获得了最佳的预测能力:FL 为 0.67,PH 为 0.60,YLD 为 0.53,ZN 为 0.65。多环境模型相对于单环境模型的增益范围从 YLD 的 71%到 FL 的 430%。基于包括上述四个性状在内的多性状指数选择表现最好的家系,有助于识别适合重组的家系。这些信息将用于通过基因组选择开发新的反复选择循环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0220/11341055/027e7db803d5/pone.0307009.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验