Suppr超能文献

选择具有特定性状的标记和多环境模型可提高水稻的基因组预测能力。

Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice.

机构信息

International Rice Research Institute, Los Banos, Philippines.

Banasthali University, Banasthali Vidyapith, India.

出版信息

PLoS One. 2019 May 6;14(5):e0208871. doi: 10.1371/journal.pone.0208871. eCollection 2019.

Abstract

Developing high yielding rice varieties that are tolerant to drought stress is crucial for the sustainable livelihood of rice farmers in rainfed rice cropping ecosystems. Genomic selection (GS) promises to be an effective breeding option for these complex traits. We evaluated the effectiveness of two rather new options in the implementation of GS: trait and environment-specific marker selection and the use of multi-environment prediction models. A reference population of 280 rainfed lowland accessions endowed with 215k SNP markers data was phenotyped under a favorable and two managed drought environments. Trait-specific SNP subsets (28k) were selected for each trait under each environment, using results of GWAS performed with the complete genotype dataset. Performances of single-environment and multi-environment genomic prediction models were compared using kernel regression based methods (GBLUP and RKHS) under two cross validation scenarios: availability (CV2) or not (CV1) of phenotypic data for the validation set, in one of the environments. Trait-specific marker selection strategy achieved predictive ability (PA) of genomic prediction up to 22% higher than markers selected on the bases of neutral linkage disequilibrium (LD). Tolerance to drought stress was up to 32% better predicted by multi-environment models (especially RKHS based models) under CV2 strategy. Under the less favorable CV1 strategy, the multi-environment models achieved similar PA than the single-environment predictions. We also showed that reasonable PA could be obtained with as few as 3,000 SNP markers, even in a population of low LD extent, provided marker selection is based on pairwise LD. The implications of these findings for breeding for drought tolerance are discussed. The most resource sparing option would be accurate phenotyping of the reference population in a favorable environment and under a managed drought, while the candidate population would be phenotyped only under one of those environments.

摘要

培育具有耐旱性的高产水稻品种对于雨养水稻种植系统中水稻种植者的可持续生计至关重要。基因组选择(GS)有望成为这些复杂性状的有效育种选择。我们评估了两种在实施 GS 中相对较新的选项的有效性:针对特定性状和环境的标记选择以及使用多环境预测模型。一个由 280 个雨养低地品种组成的参考群体,具有 215k SNP 标记数据,在一个有利和两个管理干旱环境下进行了表型鉴定。针对每个环境下的每个性状,使用全基因型数据集进行 GWAS 的结果,选择了 28k 的特定性状 SNP 子集。使用基于核回归的方法(GBLUP 和 RKHS)在两种交叉验证方案下比较了单环境和多环境基因组预测模型的性能:验证集中是否有(CV2)或没有(CV1)表型数据,在其中一个环境中。基于特定性状的标记选择策略可实现高达 22%的基因组预测能力(PA)高于基于中性连锁不平衡(LD)选择的标记。在 CV2 策略下,多环境模型(尤其是基于 RKHS 的模型)预测耐旱性的能力提高了 32%。在不太有利的 CV1 策略下,多环境模型的预测能力与单环境预测相当。我们还表明,即使在低 LD 程度的群体中,只要基于成对 LD 进行标记选择,也可以用 3000 个 SNP 标记获得合理的 PA。讨论了这些发现对耐旱性育种的意义。最节省资源的选择是在有利环境和管理干旱下对参考群体进行准确的表型鉴定,而候选群体只需在其中一个环境下进行表型鉴定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e1d/6502484/ef605296214b/pone.0208871.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验