Suppr超能文献

基于基因组和环境的复杂性状预测模型及方法:纳入基因型×环境互作

Genome and Environment Based Prediction Models and Methods of Complex Traits Incorporating Genotype × Environment Interaction.

作者信息

Crossa José, Montesinos-López Osval Antonio, Pérez-Rodríguez Paulino, Costa-Neto Germano, Fritsche-Neto Roberto, Ortiz Rodomiro, Martini Johannes W R, Lillemo Morten, Montesinos-López Abelardo, Jarquin Diego, Breseghello Flavio, Cuevas Jaime, Rincent Renaud

机构信息

International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Mexico.

Colegio de Postgraduados, Montecillos, Mexico.

出版信息

Methods Mol Biol. 2022;2467:245-283. doi: 10.1007/978-1-0716-2205-6_9.

Abstract

Genomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E.

摘要

基于育种值的基因组选择(GS)的成功实施,基因组预测模型至关重要。与动物育种不同,植物育种包含大量多环境和多年的田间试验数据。因此,基因组预测模型应纳入基因型×环境(G×E)互作,多数情况下,当品系在不同环境中的反应不同时,这会提高预测性能。在本章中,我们描述了自2012年以来与考虑G×E互作的GS模型进展相关的历史时间表。我们阐述了这些GS模型的理论和实践方面,包括在纳入复杂连续和分类尺度性状的G×E结构时预测性能的提升。然后,我们详细解释了用于连续和非连续(分类)尺度测量的复杂性状的主要G×E基因组预测模型。关于G×E互作模型,本综述还探讨了高通量表型数据(表型组学)产生的信息分析,以及多性状和多环境田间试验数据的联合分析,这些也用于多性状G×E互作的综合评估。还概述了纳入非基因组数据以提高G×E方法的准确性和生物学可靠性。我们展示了大规模环境分型(环境组学)的最新进展,以及如何使用机械计算模型得出对预测表型和解释G×E有用的作物生长和发育方面的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验