Ben Hassen Manel, Bartholomé Jérôme, Valè Giampiero, Cao Tuong-Vi, Ahmadi Nourollah
CIRAD-Centre de Coopération International en Recherche Agronomique pour le Développement, UMR AGAP-Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, F-34398 Montpellier, France.
UMR AGAP-Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes, Université Montpellier, CIRAD-Centre de Coopération International en Recherche Agronomique pour le Développement, INRA-Institut National de Recherche Agronomique Montpellier SupAgro, Montpellier, France.
G3 (Bethesda). 2018 Jul 2;8(7):2319-2332. doi: 10.1534/g3.118.200098.
Developing rice varieties adapted to alternate wetting and drying water management is crucial for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods that account for genotype by environment interactions. Two breeding populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) were evaluated under alternate wetting and drying and continuous flooding management systems. The predictive ability of genomic prediction for response variables (index of relative performance and the slope of the joint regression) and for multi-environment genomic prediction models were compared. For the three traits considered (days to flowering, panicle weight and nitrogen-balance index), significant genotype by environment interactions were observed in both populations. In cross validation, predictive ability for the index was on average lower (0.31) than that of the slope of the joint regression (0.64) whatever the trait considered. Similar results were found for progeny validation. Both cross-validation and progeny validation experiments showed that the performance of multi-environment models predicting unobserved phenotypes of untested entrees was similar to the performance of single environment models with differences in predictive ability ranging from -6-4% depending on the trait and on the statistical model concerned. The predictive ability of multi-environment models predicting unobserved phenotypes of entrees evaluated under both water management systems outperformed single environment models by an average of 30%. Practical implications for breeding rice for adaptation to alternate wetting and drying system are discussed.
培育适应干湿交替水分管理的水稻品种对于灌溉水稻种植系统的可持续性至关重要。在此,我们报告了第一项研究,该研究探索了利用考虑基因型与环境互作的基因组预测方法培育适应干湿交替的水稻的可行性。在干湿交替和持续淹水管理系统下对两个育种群体(一个由284份材料组成的参考群体和一个由97个高级品系组成的后代群体)进行了评估。比较了基因组预测对响应变量(相对表现指数和联合回归斜率)以及多环境基因组预测模型的预测能力。对于所考虑的三个性状(抽穗天数、穗重和氮平衡指数),在两个群体中均观察到显著的基因型与环境互作。在交叉验证中,无论考虑何种性状,指数的预测能力平均(0.31)低于联合回归斜率的预测能力(0.64)。在后代验证中也发现了类似结果。交叉验证和后代验证实验均表明,预测未测试入选材料未观察到的表型的多环境模型的表现与单环境模型的表现相似,预测能力的差异在-6%至4%之间,具体取决于性状和所涉及的统计模型。预测在两种水分管理系统下评估的入选材料未观察到的表型的多环境模型的预测能力平均比单环境模型高出30%。讨论了培育适应干湿交替系统水稻的实际意义。