Suppr超能文献

RGCNCDA:关系图卷积网络通过整合微小RNA改善环状RNA与疾病关联预测

RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs.

作者信息

Chen Yaojia, Wang Yanpeng, Ding Yijie, Su Xi, Wang Chunyu

机构信息

Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.

Beidahuang Industry Group General Hospital, Harbin, China.

出版信息

Comput Biol Med. 2022 Apr;143:105322. doi: 10.1016/j.compbiomed.2022.105322. Epub 2022 Feb 20.

Abstract

Recently, a large number of studies have indicated that circRNAs with covalently closed loops play important roles in biological processes and have potential as diagnostic biomarkers. Therefore, research on the circRNA-disease relationship is helpful in disease diagnosis and treatment. However, traditional biological verification methods require considerable labor and time costs. In this paper, we propose a new computational method (RGCNCDA) to predict circRNA-disease associations based on relational graph convolutional networks (R-GCNs). The method first integrates the circRNA similarity network, miRNA similarity network, disease similarity network and association networks among them to construct a global heterogeneous network. Then, it employs the random walk with restart (RWR) and principal component analysis (PCA) models to learn low-dimensional and high-order information from the global heterogeneous network as the topological features. Finally, a prediction model based on an R-GCN encoder and a DistMult decoder is built to predict the potential disease-associated circRNA. The predicted results demonstrate that RGCNCDA performs significantly better than the other six state-of-the-art methods in a 5-fold cross validation. Furthermore, the case study illustrates that RGCNCDA can effectively discover potential circRNA-disease associations.

摘要

最近,大量研究表明,具有共价闭合环的环状RNA(circRNA)在生物过程中发挥着重要作用,并且具有作为诊断生物标志物的潜力。因此,对circRNA与疾病关系的研究有助于疾病的诊断和治疗。然而,传统的生物学验证方法需要相当多的人力和时间成本。在本文中,我们提出了一种新的计算方法(RGCNCDA),用于基于关系图卷积网络(R-GCN)预测circRNA与疾病的关联。该方法首先整合circRNA相似性网络、微小RNA(miRNA)相似性网络、疾病相似性网络以及它们之间的关联网络,构建一个全局异质网络。然后,它采用带重启的随机游走(RWR)和主成分分析(PCA)模型,从全局异质网络中学习低维和高阶信息作为拓扑特征。最后,构建一个基于R-GCN编码器和DistMult解码器的预测模型,以预测潜在的疾病相关circRNA。预测结果表明,在5折交叉验证中,RGCNCDA的表现明显优于其他六种最先进的方法。此外,案例研究表明,RGCNCDA可以有效地发现潜在的circRNA与疾病的关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验