Suppr超能文献

通过图-文本对齐和多粒度表示增强来提升分子性质预测的性能。

Boosting the performance of molecular property prediction via graph-text alignment and multi-granularity representation enhancement.

作者信息

Zhao Zhuoran, Zhou Qing, Wu Chengkai, Su Renbin, Xiong Weihong

机构信息

College of Computer Science, Chongqing University, Chongqing 400044, China.

Department of Ultrasound, Xinxiang Medical University Henan Provincial People's Hospital, Zhengzhou 450003, China.

出版信息

J Mol Graph Model. 2024 Nov;132:108843. doi: 10.1016/j.jmgm.2024.108843. Epub 2024 Aug 5.

Abstract

Deep learning is playing an increasingly important role in accurate prediction of molecular properties. Prior to being processed by a deep learning model, a molecule is typically represented in the form of a text or a graph. While some methods attempt to integrate these two forms of molecular representations, the misalignment of graph and text embeddings presents a significant challenge to fuse two modalities. To solve this problem, we propose a method that aligns and fuses graph and text features in the embedding space by using contrastive loss and cross attentions. Additionally, we enhance the molecular representation by incorporating multi-granularity information of molecules on the levels of atoms, functional groups, and molecules. Extensive experiments show that our model outperforms state-of-the-art models in downstream tasks of molecular property prediction, achieving superior performance with less pretraining data. The source codes and data are available at https://github.com/zzr624663649/multimodal_molecular_property.

摘要

深度学习在分子性质的准确预测中发挥着越来越重要的作用。在由深度学习模型处理之前,分子通常以文本或图形的形式表示。虽然一些方法试图整合这两种分子表示形式,但图形和文本嵌入的不对齐对融合这两种模态提出了重大挑战。为了解决这个问题,我们提出了一种方法,通过使用对比损失和交叉注意力在嵌入空间中对齐和融合图形和文本特征。此外,我们通过纳入分子在原子、官能团和分子层面的多粒度信息来增强分子表示。大量实验表明,我们的模型在分子性质预测的下游任务中优于现有模型,在使用更少预训练数据的情况下实现了卓越的性能。源代码和数据可在https://github.com/zzr624663649/multimodal_molecular_property获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验