Suppr超能文献

细胞命运模拟揭示肿瘤微环境中的癌细胞特征。

Cell fate simulation reveals cancer cell features in the tumor microenvironment.

机构信息

Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada.

Glycobiology and Bioimaging Laboratory of Research Center for Infectious Diseases and Axe of Infectious and Immunological Diseases, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada; Laboratory of DNA Damage Responses and Bioimaging, Research Centre of CHU de Quebec, Faculty of Medicine, Laval University, Quebec, Canada.

出版信息

J Biol Chem. 2024 Sep;300(9):107697. doi: 10.1016/j.jbc.2024.107697. Epub 2024 Aug 20.

Abstract

To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and 3D TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.

摘要

为了阐明肿瘤微环境(TME)中癌细胞特征的动态演变,我们开发了一种结合单细胞跟踪、细胞命运模拟和 3D TME 建模的综合方法。我们首先分析了培养的胰腺(MiaPaCa2)和宫颈(HeLa)癌细胞系中单个癌细胞的时空行为,重点研究了与细胞干性相关的聚糖上的α2-6 唾液酸(α2-6Sia)修饰。我们的研究结果表明,MiaPaCa2 细胞表现出显著更高水平的α2-6Sia 修饰,与增强的生殖能力相关,而 HeLa 细胞则较少出现这种修饰。为了适应α2-6Sia 水平的体内变异性,我们采用了一种细胞命运模拟算法,该算法根据我们的观察数据,在变化唾液酸化水平的同时,数字化地生成细胞群体,从而模拟细胞生长模式。随后,我们使用这些推断的细胞群体进行了 3D TME 模拟,考虑了可能影响癌细胞生长的微环境。我们使用了 193 例宫颈和 172 例胰腺癌症病例的免疫细胞景观信息来估计正负面影响的程度。我们的分析表明,与 HeLa 细胞相比,基于 MiaPaCa2 细胞特征推断的细胞在 TME 中的免疫细胞景观的影响较小,这表明癌细胞的命运不仅受到周围免疫景观的影响,还受到癌细胞自身特征的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a99/11419826/9a9b6db55c56/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验