Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.
ACS Synth Biol. 2024 Sep 20;13(9):2653-2666. doi: 10.1021/acssynbio.4c00313. Epub 2024 Aug 22.
The field of Engineered Living Materials (ELMs) integrates engineered living organisms into natural biomaterials to achieve diverse objectives. Multiorganism consortia, prevalent in both naturally occurring and synthetic microbial cultures, exhibit complex functionalities and interrelationships, extending the scope of what can be achieved with individual engineered bacterial strains. However, the ELMs comprising microbial consortia are still in the developmental stage. In this Review, we introduce two strategies for designing ELMs constituted of microbial consortia: a top-down strategy, which involves characterizing microbial interactions and mimicking and reconstructing natural ecosystems, and a bottom-up strategy, which entails the rational design of synthetic consortia and their assembly with material substrates to achieve user-defined functions. Next, we summarize technologies from synthetic biology that facilitate the efficient engineering of microbial consortia for performing tasks more complex than those that can be done with single bacterial strains. Finally, we discuss essential challenges and future perspectives for microbial consortia-based ELMs.
工程化活体材料(ELM)领域将经过工程改造的活体生物整合到天然生物材料中,以实现多种目标。多生物体联合体在自然发生和合成微生物培养物中都很普遍,具有复杂的功能和相互关系,扩展了仅使用单个工程化细菌菌株所能实现的范围。然而,由微生物联合体组成的 ELM 仍处于发展阶段。在这篇综述中,我们介绍了设计由微生物联合体组成的 ELM 的两种策略:一种是自上而下的策略,包括对微生物相互作用进行表征,并模拟和重建自然生态系统;另一种是自下而上的策略,需要对合成联合体进行合理设计,并将其与材料基质组装起来以实现用户定义的功能。接下来,我们总结了合成生物学中的技术,这些技术有助于高效地对微生物联合体进行工程改造,以执行比单个细菌菌株更复杂的任务。最后,我们讨论了基于微生物联合体的 ELM 的关键挑战和未来展望。