Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
Nat Commun. 2024 Aug 22;15(1):7206. doi: 10.1038/s41467-024-50770-7.
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
顶端膜抗原-1(AMA1)是一种保守的疟疾疫苗候选物,对于与棒状体颈部蛋白(RON)复合物形成紧密连接至关重要,使疟原虫能够侵入人类红细胞、肝细胞和蚊子唾液腺。尽管它具有重要作用,但 AMA1 广泛的表面多态性导致了菌株特异性保护,限制了基于 AMA1 的干预措施在初始临床试验之外的成功。在这里,我们鉴定了一种 i 体,这是一种人类化的单域抗体样分子,能够以低纳摩尔亲和力识别 AMA1 中的保守泛种构象表位,并抑制 RON2 配体与 AMA1 的结合。结构特征表明,WD34 i 体表位跨越 AMA1 中保守的疏水性裂隙中心,其中相互作用的残基在所有疟原虫物种中高度保守。此外,我们表明 WD34 抑制了多种疟原虫物种的裂殖子侵入红细胞和疟原虫孢子侵入肝细胞。尽管 WD34 在小鼠血清中的半衰期较短,但我们证明它在雌性 BALB/c 小鼠中短暂抑制了 P. berghei 感染。我们的工作描述了第一个具有抑制多种疟原虫生命周期阶段活性的泛种 AMA1 生物。具有改善的药代动力学特征,WD34 可能成为针对多种疟原虫的潜在免疫疗法。