Suppr超能文献

基于注意力机制的 CNN_GRU 模型在时空 PM 预测中的应用。

A new attention-based CNN_GRU model for spatial-temporal PM prediction.

机构信息

Department of Civil Engineering and Transportation, University of Isfahan, Isfahan, Iran.

出版信息

Environ Sci Pollut Res Int. 2024 Aug;31(40):53140-53155. doi: 10.1007/s11356-024-34690-z. Epub 2024 Aug 23.

Abstract

Accurately predicting the spatial-temporal distribution of PM is challenging due to missing data and selecting an appropriate modeling method. Effective imputation of missing data must consider the relationships between variables while preserving their inherent variability and uncertainty. In this study, we employed machine learning techniques to impute missing data by analyzing the relationships between meteorological variables and other pollutants. Subsequently, we introduced an innovative spatiotemporal hybrid model, AC_GRU, which integrates a one-dimensional convolutional neural network (CNN), GRU, and an attention-based network to predict PM concentrations in urban areas. The AC_GRU model utilizes meteorological variables, PM concentrations from nearby air quality monitoring stations, and concentrations of other pollutants as inputs. This approach allows the model to learn spatiotemporal correlations within the time-series data, enhancing the accuracy of PM predictions. Additionally, the attention mechanism improves prediction accuracy by automatically weighting the past input variables based on their importance for future PM predictions. The experimental results demonstrate that our AC_GRU model outperforms state-of-the-art methods, making it a valuable tool for urban air quality management and public health protection.

摘要

由于数据缺失和选择合适的建模方法,准确预测 PM 的时空分布具有挑战性。有效的缺失数据插补必须考虑变量之间的关系,同时保持其固有变异性和不确定性。在本研究中,我们通过分析气象变量与其他污染物之间的关系,采用机器学习技术插补缺失数据。随后,我们引入了一种创新的时空混合模型 AC_GRU,该模型集成了一维卷积神经网络(CNN)、GRU 和基于注意力的网络,用于预测城市地区的 PM 浓度。AC_GRU 模型利用气象变量、附近空气质量监测站的 PM 浓度和其他污染物浓度作为输入。这种方法允许模型学习时间序列数据中的时空相关性,从而提高 PM 预测的准确性。此外,注意力机制通过根据过去输入变量对未来 PM 预测的重要性自动加权,提高了预测精度。实验结果表明,我们的 AC_GRU 模型优于最先进的方法,是城市空气质量管理和公共卫生保护的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验