Suppr超能文献

基于变模态分解和深度学习的多站点气象因素时空融合的 PM2.5 日浓度预测。

Daily PM2.5 concentration prediction based on variational modal decomposition and deep learning for multi-site temporal and spatial fusion of meteorological factors.

机构信息

College of Information, Shanghai Ocean University, Hucheng Huan Road 999, Pudong Shanghai, Shanghai, 201306, P. R. China.

出版信息

Environ Monit Assess. 2024 Aug 29;196(9):859. doi: 10.1007/s10661-024-13005-2.

Abstract

Air pollution, particularly PM2.5, has long been a critical concern for the atmospheric environment. Accurately predicting daily PM2.5 concentrations is crucial for both environmental protection and public health. This study introduces a new hybrid model within the "Decomposition-Prediction-Integration" (DPI) framework, which combines variational modal decomposition (VMD), causal convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM), and attention mechanism (AM), named as VCBA, for spatio-temporal fusion of multi-site data to forecast daily PM2.5 concentrations in a city. The approach involves integrating air quality data from the target site with data from neighboring sites, applying mathematical techniques for dimensionality reduction, decomposing PM2.5 concentration data using VMD, and utilizing Causal CNN and BiLSTM models with an attention mechanism to enhance performance. The final prediction results are obtained through linear aggregation. Experimental results demonstrate that the VCBA model performs exceptionally well in predicting daily PM2.5 concentrations at various stations in Taiyuan City, Shanxi Province, China. Evaluation metrics such as RMSE, MAE, and R are reported as 2.556, 1.998, and 0.973, respectively. Compared to traditional methods, this approach offers higher prediction accuracy and stronger spatio-temporal modeling capabilities, providing an effective solution for accurate PM2.5 daily concentration prediction.

摘要

空气污染,尤其是 PM2.5,一直是大气环境的一个关键关注点。准确预测每日 PM2.5 浓度对于环境保护和公众健康都至关重要。本研究在“分解-预测-集成”(DPI)框架内引入了一种新的混合模型,该模型结合了变分模态分解(VMD)、因果卷积神经网络(CNN)、双向长短期记忆(BiLSTM)和注意力机制(AM),命名为 VCBA,用于多站点数据的时空融合,以预测城市的每日 PM2.5 浓度。该方法涉及将目标站点的空气质量数据与相邻站点的数据集成,应用降维数学技术,使用 VMD 对 PM2.5 浓度数据进行分解,并利用具有注意力机制的因果 CNN 和 BiLSTM 模型来提高性能。最终的预测结果通过线性聚合获得。实验结果表明,VCBA 模型在预测中国山西省太原市各站点的每日 PM2.5 浓度方面表现出色。报告的评估指标如 RMSE、MAE 和 R 分别为 2.556、1.998 和 0.973。与传统方法相比,该方法提供了更高的预测精度和更强的时空建模能力,为准确预测每日 PM2.5 浓度提供了有效的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验