Suppr超能文献

基于 CNN-LSTM 神经网络算法的 PM 浓度预测。

Prediction of PM concentration based on a CNN-LSTM neural network algorithm.

机构信息

School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Qingdao City, Shandong Province, China.

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, Lanzhou City, Gansu Province, China.

出版信息

PeerJ. 2024 Aug 6;12:e17811. doi: 10.7717/peerj.17811. eCollection 2024.

Abstract

Fine particulate matter (PM) is a major air pollutant affecting human survival, development and health. By predicting the spatial distribution concentration of PM, pollutant sources can be better traced, allowing measures to protect human health to be implemented. Thus, the purpose of this study is to predict and analyze the PM concentration of stations based on the integrated deep learning of a convolutional neural network long short-term memory (CNN-LSTM) model. To solve the complexity and nonlinear characteristics of PM time series data problems, we adopted the CNN-LSTM deep learning model. We collected the PMdata of Qingdao in 2020 as well as meteorological factors such as temperature, wind speed and air pressure for pre-processing and characteristic analysis. Then, the CNN-LSTM deep learning model was integrated to capture the temporal and spatial features and trends in the data. The CNN layer was used to extract spatial features, while the LSTM layer was used to learn time dependencies. Through comparative experiments and model evaluation, we found that the CNN-LSTM model can achieve excellent PM prediction performance. The results show that the coefficient of determination (R) is 0.91, and the root mean square error (RMSE) is 8.216 µg/m. The CNN-LSTM model achieves better prediction accuracy and generalizability compared with those of the CNN and LSTM models (R values of 0.85 and 0.83, respectively, and RMSE values of 11.356 and 14.367, respectively). Finally, we analyzed and explained the predicted results. We also found that some meteorological factors (such as air temperature, pressure, and wind speed) have significant effects on the PM concentration at ground stations in Qingdao. In summary, by using deep learning methods, we obtained better prediction performance and revealed the association between PM concentration and meteorological factors. These findings are of great significance for improving the quality of the atmospheric environment and protecting public health.

摘要

细颗粒物(PM)是影响人类生存、发展和健康的主要空气污染物。通过预测 PM 的空间分布浓度,可以更好地追踪污染物来源,从而实施保护人类健康的措施。因此,本研究旨在基于卷积神经网络长短期记忆(CNN-LSTM)模型的集成深度学习,预测和分析站点的 PM 浓度。为了解决 PM 时间序列数据的复杂性和非线性特征问题,我们采用了 CNN-LSTM 深度学习模型。我们收集了 2020 年青岛的 PM 数据以及温度、风速和气压等气象因素,进行预处理和特征分析。然后,集成 CNN-LSTM 深度学习模型以捕获数据中的时间和空间特征和趋势。CNN 层用于提取空间特征,而 LSTM 层用于学习时间依赖性。通过对比实验和模型评估,我们发现 CNN-LSTM 模型可以实现出色的 PM 预测性能。结果表明,决定系数(R)为 0.91,均方根误差(RMSE)为 8.216 µg/m。与 CNN 和 LSTM 模型相比(R 值分别为 0.85 和 0.83,RMSE 值分别为 11.356 和 14.367),CNN-LSTM 模型具有更好的预测精度和泛化能力。最后,我们对预测结果进行了分析和解释。我们还发现一些气象因素(如空气温度、压力和风速)对青岛地面站的 PM 浓度有显著影响。总之,通过使用深度学习方法,我们获得了更好的预测性能,并揭示了 PM 浓度与气象因素之间的关联。这些发现对于改善大气环境质量和保护公众健康具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10a/11313410/c93673908f5b/peerj-12-17811-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验