Suppr超能文献

TIANA:基于神经注意力的转录因子协同推断分析。

TIANA: transcription factors cooperativity inference analysis with neural attention.

机构信息

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.

出版信息

BMC Bioinformatics. 2024 Aug 22;25(1):274. doi: 10.1186/s12859-024-05852-0.

Abstract

BACKGROUND

Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements.

RESULT

We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs.

CONCLUSION

Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through: https://github.com/rzzli/TIANA .

摘要

背景

越来越多的证据表明,远端调控元件对于细胞功能和状态至关重要。这些远端元件中的序列,特别是转录因子结合的基序,为潜在的调控程序提供了关键信息。然而,识别这些基序的转录因子之间的协同作用是非线性和多路复用的,这使得传统的建模方法不足以捕捉潜在的机制。最近注意力机制的发展,在捕捉输入序列之间的依赖性方面表现出优异的性能,使其非常适合揭示和破译调控元件之间复杂的依赖性。

结果

我们提出了 Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA),这是一个专注于可解释性的深度学习框架。在这项研究中,我们证明了 TIANA 可以发现与转录因子基序共现相关的生物学上有意义的见解。与现有工具相比,TIANA 在从共现基序中识别潜在转录因子协同作用方面表现出更好的可解释性和稳健性能。

结论

我们的结果表明,TIANA 可以成为从远端序列数据中破译转录因子协同作用的有效工具。TIANA 可以通过:https://github.com/rzzli/TIANA 访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8a1/11342676/6c60e7862d16/12859_2024_5852_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验