Di Palo Nicola, Adamska Lyudmyla, Bonetti Simone, Inzani Giacomo, Talarico Matteo, Arias Velasco Marta, Dolso Gian Luca, Borrego-Varillas Rocío, Nisoli Mauro, Pittalis Stefano, Rozzi Carlo Andrea, Lucchini Matteo
Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 20133 Milano, Italy.
Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy.
Struct Dyn. 2024 Aug 19;11(4):044303. doi: 10.1063/4.0000253. eCollection 2024 Jul.
Understanding photoinjection in semiconductors-a fundamental physical process-represents the first step toward devising new opto-electronic devices, capable of operating on unprecedented time scales. Fostered by the development of few-femtosecond, intense infrared pulses, and attosecond spectroscopy techniques, ultrafast charge injection in solids has been the subject of intense theoretical and experimental investigation. Recent results have shown that while under certain conditions photoinjection can be ascribed to a single, well-defined phenomenon, in a realistic multi-band semiconductor like Ge, several competing mechanisms determine the sub-cycle interaction of an intense light field with the atomic and electronic structure of matter. In this latter case, it is yet unclear how the complex balance between the different physical mechanisms is altered by the chosen interaction geometry, dictated by the relative orientation between the crystal lattice and the laser electric field direction. In this work, we investigate ultrafast photoinjection in a Ge monocrystalline sample with attosecond temporal resolution under two distinct orientations. Our combined theoretical and experimental effort suggests that the physical mechanisms determining carrier excitation in Ge are largely robust against crystal rotation. Nevertheless, the different alignment between the laser field and the crystal unit cell causes non-negligible changes in the momentum distribution of the excited carriers and their injection yield. Further experiments are needed to clarify whether the crystal orientation can be used to tune the photoinjection of carriers in a semiconductor at these extreme time scales.
理解半导体中的光注入——一个基本的物理过程——是设计能够以前所未有的时间尺度运行的新型光电器件的第一步。在飞秒级短脉冲、强红外脉冲以及阿秒光谱技术发展的推动下,固体中的超快电荷注入一直是深入的理论和实验研究的主题。最近的结果表明,虽然在某些条件下光注入可归因于单一的、明确的现象,但在像锗这样实际的多能带半导体中,几种相互竞争的机制决定了强光场与物质的原子和电子结构的亚周期相互作用。在后一种情况下,尚不清楚由晶格与激光电场方向之间的相对取向所决定的所选相互作用几何结构如何改变不同物理机制之间的复杂平衡。在这项工作中,我们在两种不同取向的情况下,以阿秒时间分辨率研究锗单晶样品中的超快光注入。我们理论与实验相结合的研究表明,决定锗中载流子激发的物理机制在很大程度上不受晶体旋转的影响。然而,激光场与晶体晶胞之间的不同取向会导致激发载流子的动量分布及其注入产率发生不可忽略的变化。需要进一步的实验来阐明在这些极端时间尺度下,晶体取向是否可用于调节半导体中载流子的光注入。