Suppr超能文献

智能家居中临床恶化的非侵入式监测。

Unobtrusive Monitoring of Clinical Deterioration in Smart Homes.

机构信息

Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany.

Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:513-517. doi: 10.3233/SHTI240462.

Abstract

Clinical deterioration (CD) is the physiological decompensation that incurs care escalation, protracted hospital stays, or even death. The early warning score (EWS) calculates the occurrence of CD based on five vital signs. However, there are limited reports regarding EWS monitoring in smart home settings. This study aims to design a CD detection system for health monitoring at home (HM@H) that automatically identifies unstable vital signs and alarms the medical emergency team. We conduct a requirement analysis by interviewing experts. We use unified modeling language (UML) diagrams to define the behavioral and structural aspects of HM@H. We developed a prototype using a SQL-based database and Python to calculate the EWS in the front end. A team of five experts assessed the accuracy and validity of the designed system. The requirement analysis for four main users yielded 30 data elements and 10 functions. Three main components of HM@H are the graphical user interface (GUI), the application programming interface (API), and the server. Results show the possibility of using unobtrusive sensors to collect smart home residents' vital signs and calculate their EWS scores in real-time. However, further implementation with real data, for frail elderly and hospital-discharged patients is required.

摘要

临床恶化(CD)是指导致医疗护理升级、延长住院时间甚至死亡的生理失代偿。早期预警评分(EWS)根据五个生命体征计算 CD 的发生。然而,关于智能家居环境中 EWS 监测的报告有限。本研究旨在设计一个用于家庭健康监测(HM@H)的 CD 检测系统,该系统能够自动识别不稳定的生命体征并向医疗急救团队发出警报。我们通过访谈专家进行需求分析。我们使用统一建模语言(UML)图来定义 HM@H 的行为和结构方面。我们使用基于 SQL 的数据库和 Python 在前端开发了一个原型来计算 EWS。一个由五名专家组成的团队评估了设计系统的准确性和有效性。对四个主要用户的需求分析得出了 30 个数据元素和 10 个功能。HM@H 的三个主要组件是图形用户界面(GUI)、应用程序编程接口(API)和服务器。结果表明,使用非侵入性传感器实时收集智能家居居民的生命体征并计算其 EWS 评分是可行的。然而,需要进一步使用真实数据对体弱老年人和出院患者进行实施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验