E-MEDIA, STADIUS, Department of Electrical Engineering (ESAT), Campus Group T, KU Leuven, 3000 Leuven, Belgium.
Measure, Model & Manage Bioresponses (M3-BIORES), Department of Biosystems, KU Leuven, 3000 Leuven, Belgium.
Sensors (Basel). 2020 Nov 18;20(22):6593. doi: 10.3390/s20226593.
In this prospective, interventional, international study, we investigate continuous monitoring of hospitalised patients' vital signs using wearable technology as a basis for real-time early warning scores (EWS) estimation and vital signs time-series prediction. The collected continuous monitored vital signs are heart rate, blood pressure, respiration rate, and oxygen saturation of a heterogeneous patient population hospitalised in cardiology, postsurgical, and dialysis wards. Two aspects are elaborated in this study. The first is the high-rate (every minute) estimation of the statistical values (e.g., minimum and mean) of the vital signs components of the EWS for one-minute segments in contrast with the conventional routine of 2 to 3 times per day. The second aspect explores the use of a hybrid machine learning algorithm of kNN-LS-SVM for predicting future values of monitored vital signs. It is demonstrated that a real-time implementation of EWS in clinical practice is possible. Furthermore, we showed a promising prediction performance of vital signs compared to the most recent state of the art of a boosted approach of LSTM. The reported mean absolute percentage errors of predicting one-hour averaged heart rate are 4.1, 4.5, and 5% for the upcoming one, two, and three hours respectively for cardiology patients. The obtained results in this study show the potential of using wearable technology to continuously monitor the vital signs of hospitalised patients as the real-time estimation of EWS in addition to a reliable prediction of the future values of these vital signs is presented. Ultimately, both approaches of high-rate EWS computation and vital signs time-series prediction is promising to provide efficient cost-utility, ease of mobility and portability, streaming analytics, and early warning for vital signs deterioration.
在这项前瞻性、干预性、国际性研究中,我们研究了使用可穿戴技术连续监测住院患者的生命体征,以便为实时早期预警评分(EWS)估计和生命体征时间序列预测提供基础。该研究收集了来自心脏病学、外科术后和透析病房的异质住院患者的连续监测生命体征,包括心率、血压、呼吸频率和血氧饱和度。本研究阐述了两个方面。第一个方面是每分钟高频率(每分钟一次)估计 EWS 生命体征成分的统计值(例如,最小值和平均值),而不是传统的每天 2 到 3 次的常规方法。第二个方面探讨了使用 kNN-LS-SVM 混合机器学习算法预测监测生命体征的未来值。结果表明,在临床实践中可以实时实现 EWS。此外,与最近的 LSTM 增强方法的最新状态相比,我们展示了生命体征的有前途的预测性能。对于心脏病患者,预测未来一小时平均心率的报告平均绝对百分比误差分别为 4.1%、4.5%和 5%,用于未来一小时、两小时和三小时。本研究中的结果表明,使用可穿戴技术连续监测住院患者生命体征的潜力,除了能够可靠地预测这些生命体征的未来值外,还可以实时估计 EWS。最终,高频率 EWS 计算和生命体征时间序列预测这两种方法都有望提供高效的成本效益、易于移动性和便携性、流分析和生命体征恶化的早期预警。