Suppr超能文献

用于预测慢性危重病和心力衰竭患者院内死亡率的可解释机器学习模型:一项多中心研究。

Interpretable machine learning models for predicting in-hospital mortality in patients with chronic critical illness and heart failure: A multicenter study.

作者信息

He Min, Lin Yongqi, Ren Siyu, Li Pengzhan, Liu Guoqing, Hu Liangbo, Bei Xueshuang, Lei Lingyan, Wang Yue, Zhang Qianghong, Zeng Xiaocong

机构信息

Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.

Guangxi Medical University, Nanning, Guangxi, China.

出版信息

Digit Health. 2025 Jun 6;11:20552076251347785. doi: 10.1177/20552076251347785. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

Heart failure (HF) is a primary contributor to morbidity and mortality among patients in intensive care units (ICUs), particularly those experiencing chronic critical illness (CCI). This study aims to develop and validate a machine learning (ML) model for predicting in-hospital mortality in CCI patients with HF.

METHODS

Retrospective data from over 200 hospitals were sourced from the Medical Information Mart for Intensive Care III (MIMIC-III), MIMIC-IV, and the eICU Collaborative Research Database (eICU-CRD). Only patients diagnosed with both CCI and HF were included. The MIMIC datasets served as the derivation cohort, while the eICU-CRD dataset was used for external validation. Key predictive variables were identified through recursive feature elimination. A range of ML algorithms, including random forest, K-nearest neighbors, and support vector machine (SVM), were evaluated alongside four other models. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC). Model interpretability was enhanced through SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanations.

RESULTS

A total of 780 and 610 patients with CCI and HF were assigned to the derivation and validation cohorts, respectively. Eleven features were selected for model development. The SVM model demonstrated substantial predictive accuracy, with AUROC values of 0.781 and 0.675 in the derivation and validation cohorts. Feature importance analysis using SHAP identified Sequential Organ Failure Assessment score, oxyhemoglobin saturation, and blood pressure as key predictors.

CONCLUSION

The SVM model developed reliably predicts in-hospital mortality in patients with CCI and HF, offering a valuable tool for early intervention and enhanced patient management.

摘要

背景

心力衰竭(HF)是重症监护病房(ICU)患者发病和死亡的主要原因,尤其是那些患有慢性危重病(CCI)的患者。本研究旨在开发并验证一种机器学习(ML)模型,用于预测患有HF的CCI患者的院内死亡率。

方法

来自200多家医院的回顾性数据来源于重症监护医学信息集市III(MIMIC-III)、MIMIC-IV和电子ICU协作研究数据库(eICU-CRD)。仅纳入同时诊断为CCI和HF的患者。MIMIC数据集用作推导队列,而eICU-CRD数据集用于外部验证。通过递归特征消除确定关键预测变量。评估了一系列ML算法,包括随机森林、K近邻和支持向量机(SVM),以及其他四个模型。使用受试者操作特征曲线下面积(AUROC)评估模型性能。通过SHapley加性解释(SHAP)和局部可解释模型无关解释增强模型可解释性。

结果

分别有780例和610例患有CCI和HF的患者被分配到推导队列和验证队列。选择了11个特征用于模型开发。SVM模型显示出较高的预测准确性,在推导队列和验证队列中的AUROC值分别为0.781和0.675。使用SHAP进行的特征重要性分析确定序贯器官衰竭评估评分、氧合血红蛋白饱和度和血压为关键预测因素。

结论

所开发的SVM模型能够可靠地预测患有CCI和HF的患者的院内死亡率,为早期干预和加强患者管理提供了有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f248/12144373/cb6173cc1937/10.1177_20552076251347785-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验