Suppr超能文献

利用可解释的事件时间机器学习方法探讨医院拥挤问题。

Exploring Hospital Overcrowding with an Explainable Time-to-Event Machine Learning Approach.

机构信息

KTH Royal Insitute of Technology, Stockholm, Sweden.

Uppsala Academic Hospital, Uppsala, Sweden.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:678-682. doi: 10.3233/SHTI240505.

Abstract

Emergency department (ED) overcrowding is a complex problem that is intricately linked with the operations of other hospital departments. Leveraging ED real-world production data provides a unique opportunity to comprehend this multifaceted problem holistically. This paper introduces a novel approach to analyse healthcare production data, treating the length of stay of patients, and the follow up decision regarding discharge or admission to the hospital as a time-to-event analysis problem. Our methodology employs traditional survival estimators and machine learning models, and Shapley additive explanations values to interpret the model outcomes. The most relevant features influencing length of stay were whether the patient received a scan at the ED, emergency room urgent visit, age, triage level, and the medical alarm unit category. The clinical insights derived from the explanation of the models holds promise for increase understanding of the overcrowding from the data. Our work demonstrates that a time-to-event approach to the over- crowding serves as a valuable initial to uncover crucial insights for further investigation and policy design.

摘要

急诊科(ED)拥堵是一个复杂的问题,与其他医院科室的运作密切相关。利用 ED 实际生产数据提供了一个独特的机会,可以全面了解这个多方面的问题。本文介绍了一种分析医疗保健生产数据的新方法,将患者的住院时间和出院或住院的后续决策视为一个时间事件分析问题。我们的方法采用了传统的生存估计器和机器学习模型,以及 Shapley 加法解释值来解释模型结果。影响住院时间的最相关特征是患者是否在 ED 接受扫描、急诊室紧急就诊、年龄、分诊级别和医疗警报单元类别。从模型解释中得出的临床见解有望增加对数据中过度拥挤的理解。我们的工作表明,对过度拥挤采用时间事件方法是一个有价值的起点,可以为进一步的调查和政策设计揭示关键见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验