Suppr超能文献

基于机器学习的分诊方法,用于识别急诊科中轻症、短住院时间的患者。

Machine learning-based triage to identify low-severity patients with a short discharge length of stay in emergency department.

机构信息

Department of Emergency Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 40447, Taiwan.

Department of Bioinformatics and Medical Engineering, Asia University, No. 500, Liufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan.

出版信息

BMC Emerg Med. 2022 May 20;22(1):88. doi: 10.1186/s12873-022-00632-6.

Abstract

BACKGROUND

Overcrowding in emergency departments (ED) is a critical problem worldwide, and streaming can alleviate crowding to improve patient flows. Among triage scales, patients labeled as "triage level 3" or "urgent" generally comprise the majority, but there is no uniform criterion for classifying low-severity patients in this diverse population. Our aim is to establish a machine learning model for prediction of low-severity patients with short discharge length of stay (DLOS) in ED.

METHODS

This was a retrospective study in the ED of China Medical University Hospital (CMUH) and Asia University Hospital (AUH) in Taiwan. Adult patients (aged over 20 years) with Taiwan Triage Acuity Scale level 3 were enrolled between 2018 and 2019. We used available information during triage to establish a machine learning model that can predict low-severity patients with short DLOS. To achieve this goal, we trained five models-CatBoost, XGBoost, decision tree, random forest, and logistic regression-by using large ED visit data and examined their performance in internal and external validation.

RESULTS

For internal validation in CMUH, 33,986 patients (75.9%) had a short DLOS (shorter than 4 h), and for external validation in AUH, there were 13,269 (82.7%) patients with short DLOS. The best prediction model was CatBoost in internal validation, and area under the receiver operating cha racteristic curve (AUC) was 0.755 (95% confidence interval (CI): 0.743-0.767). Under the same threshold, XGBoost yielded the best performance, with an AUC value of 0.761 (95% CI: 0.742- 0.765) in external validation.

CONCLUSIONS

This is the first study to establish a machine learning model by applying triage information alone for prediction of short DLOS in ED with both internal and external validation. In future work, the models could be developed as an assisting tool in real-time triage to identify low-severity patients as fast track candidates.

摘要

背景

急诊科(ED)过度拥挤是一个全球性的严重问题,而分诊流程分类可以缓解拥挤,改善患者流程。在分诊量表中,被标记为“分诊级别 3”或“紧急”的患者通常占大多数,但在这个多样化的人群中,没有统一的标准来分类低严重度患者。我们的目的是建立一个机器学习模型,用于预测 ED 中低严重度且出院时间较短(DLOS)的患者。

方法

这是在中国台湾地区中国医药大学附设医院(CMUH)和亚洲大学附属医院(AUH)的 ED 进行的回顾性研究。纳入 2018 年至 2019 年间年龄在 20 岁以上、台湾分诊 acuity scale 级别为 3 的成年患者。我们使用分诊期间的可用信息来建立一个机器学习模型,以预测低严重度且 DLOS 较短的患者。为了实现这一目标,我们使用大型 ED 就诊数据训练了五个模型-CatBoost、XGBoost、决策树、随机森林和逻辑回归,并在内部和外部验证中检查了它们的性能。

结果

在 CMUH 的内部验证中,33986 例患者(75.9%)的 DLOS 较短(短于 4 小时),在 AUH 的外部验证中,有 13269 例患者(82.7%)的 DLOS 较短。内部验证中最佳预测模型是 CatBoost,受试者工作特征曲线下面积(AUC)为 0.755(95%置信区间(CI):0.743-0.767)。在相同的阈值下,XGBoost 表现最佳,外部验证中的 AUC 值为 0.761(95%CI:0.742-0.765)。

结论

这是第一项通过应用分诊信息建立机器学习模型,用于预测 ED 中 DLOS 较短的内部和外部验证的研究。在未来的工作中,这些模型可以作为实时分诊的辅助工具,快速识别低严重度患者作为快速通道候选人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3e0/9123815/88f3dc560b0f/12873_2022_632_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验