Biomedical Engineering Research Centre, University of Cyprus, Cyprus.
CYENS Centre of Excellence, Nicosia, Cyprus.
Stud Health Technol Inform. 2024 Aug 22;316:1812-1816. doi: 10.3233/SHTI240783.
This study employs machine learning techniques to identify factors that influence extended Emergency Department (ED) length of stay (LOS) and derives transparent decision rules to complement the results. Leveraging a comprehensive dataset, Gradient Boosting exhibited marginally superior predictive performance compared to Random Forest for LOS classification. Notably, variables like triage acuity and the Elixhauser Comorbidity Index (ECI) emerged as robust predictors. The extracted rules optimize LOS stratification and resource allocation, demonstrating the critical role of data-driven methodologies in improving ED workflow efficiency and patient care delivery.
本研究采用机器学习技术来识别影响急诊(ED)延长住院时间(LOS)的因素,并得出透明的决策规则来补充结果。利用一个全面的数据集,梯度提升在 LOS 分类方面表现出略优于随机森林的预测性能。值得注意的是,分诊 acuity 和 Elixhauser 合并症指数(ECI)等变量成为了强有力的预测因素。提取的规则优化了 LOS 的分层和资源分配,证明了数据驱动方法在提高 ED 工作流程效率和患者护理方面的关键作用。