Suppr超能文献

理解自闭症社交媒体社区中的情感动态。

Understanding Emotional Dynamics in Autism Social Media Communities.

机构信息

Department of Education, ICT and Learning, Østfold University College, Norway.

Norwegian Centre for E-health Research, Tromsø, Norway.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:1901-1905. doi: 10.3233/SHTI240804.

Abstract

UNLABELLED

Searches for autism on social media have soared, making it a top topic. Social media posts convey not only plain text, but also sentiments and emotions that provide insight into the experiences of the autism community. While sentiment analysis categorizes overall sentiment, emotion analysis provides nuanced insights into specific emotional states. The objective of this study is to identify emotions in posts related to autism and compare the emotions specifically contained in posts that include the hashtag #ActuallyAutistic with those that do not.

METHODS

We extracted a sample of X' posts related to autism and used DistilBERT to assign one out of six emotions (sadness, joy, love, anger, fear, surprise) to each post.

RESULTS

We have analyzed a total of 414,287 posts, 98,602 (23.8%) of those included the hashtag #ActuallyAutistic. The most common expressed emotion was joy, which was expressed in 52.5% of the posts, followed by sadness, identified in 28.6% of the posts. 12% of the posts expressed fear, 4.9% reflected anger, 1.1% showed love, and 0.9% expressed surprise. Posts tagged as #ActuallyAutistic showed less joy (27.1% vs. 60.4% in posts without this hashtag, p<0.001) and more sadness (52.7% vs. 21.1% in those without the hashtag, p<0.001).

CONCLUSIONS

The use of the hashtag #ActuallyAutistic is associated with a different emotional tone, characterized by less joy and more sadness. These results suggest the need for greater support and acceptance towards the autistic community, both online and in society in general. Insights from our study can be valuable for policy makers, health, educational or other programmes aiming at enhancing well-being, inclusiveness, improve services, and create a more compassionate and understanding atmosphere for autistic people.

摘要

未加标签

社交媒体上的自闭症搜索量飙升,成为热门话题。社交媒体帖子不仅传达了纯文本,还传达了情感和情绪,这些情感和情绪为了解自闭症群体的经历提供了深入的见解。虽然情感分析可以对整体情感进行分类,但情感分析可以更细致地了解特定的情绪状态。本研究的目的是识别与自闭症相关的帖子中的情绪,并比较包含标签#ActuallyAutistic 的帖子和不包含该标签的帖子中包含的特定情绪。

方法

我们从社交媒体上提取了与自闭症相关的 X'条帖子,并使用 DistilBERT 将这六类情绪(悲伤、喜悦、爱、愤怒、恐惧、惊讶)中的一种分配给每条帖子。

结果

我们总共分析了 414287 条帖子,其中 98602 条(23.8%)包含标签# ActuallyAutistic。表达最多的情绪是喜悦,在 52.5%的帖子中表达了这种情绪,其次是悲伤,在 28.6%的帖子中表达了这种情绪。12%的帖子表达了恐惧,4.9%的帖子表达了愤怒,1.1%的帖子表达了爱,0.9%的帖子表达了惊讶。带有标签# ActuallyAutistic 的帖子表达的喜悦情绪较少(27.1%比不带该标签的帖子的 60.4%,p<0.001),表达的悲伤情绪较多(52.7%比不带该标签的帖子的 21.1%,p<0.001)。

结论

使用标签# ActuallyAutistic 与不同的情绪基调相关联,其特点是喜悦情绪较少,悲伤情绪较多。这些结果表明,无论是在网上还是在整个社会,都需要为自闭症群体提供更多的支持和接受。我们的研究结果可以为政策制定者、卫生、教育或其他旨在提高幸福感、包容性、改善服务以及为自闭症患者创造更有同情心和理解性氛围的计划提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验