Zhou Yanlong, Feng Yu, Xin Ning, Lu Jun, Xu Xingshun
Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China.
Mol Neurobiol. 2025 Mar;62(3):2835-2845. doi: 10.1007/s12035-024-04439-3. Epub 2024 Aug 23.
Stroke recurrence remains a critical challenge in clinical neurology, necessitating the identification of reliable predictive markers for better management and treatment strategies. This study investigates the interaction between lipoprotein-associated phospholipase A2 (Lp-PLA2) and platelets as a potential predictor for stroke recurrence, aiming to refine risk assessment and therapeutic approaches. In a retrospective cohort of 580 ischemic stroke patients, we analyzed clinical data with a focus on Lp-PLA2 and platelet levels. By using multivariable logistic regression, we identified independent predictors of stroke recurrence. These predictors were then used to develop a comprehensive nomogram. The study established diabetes mellitus, hypertension, low-density lipoprotein (LDL), Lp-PLA2 levels, and platelet counts as independent predictors of stroke recurrence. Crucially, the interaction parameter Lp-PLA2 * platelet (multiplication of Lp-PLA2 and platelet count) exhibited superior predictive power over each factor considered separately. Our nomogram incorporated diabetes mellitus, cerebral infarction causes, hypertension, LDL, and the Lp-PLA2 * platelet count interaction and demonstrated enhanced accuracy in predicting stroke recurrence compared to traditional risk models. The interaction between Lp-PLA2 and platelets emerged as a significant predictor for stroke recurrence when integrated with traditional risk factors. The developed nomogram offers a novel and practical tool in molecular neurobiology for assessing individual risks, facilitating personalized treatment strategies. This approach underscores the importance of multifactorial assessment in stroke management and opens avenues for targeted interventions to mitigate recurrence risks.
中风复发仍然是临床神经学中的一项严峻挑战,因此需要确定可靠的预测标志物,以制定更好的管理和治疗策略。本研究调查脂蛋白相关磷脂酶A2(Lp-PLA2)与血小板之间的相互作用,将其作为中风复发的潜在预测指标,旨在优化风险评估和治疗方法。在一项对580例缺血性中风患者的回顾性队列研究中,我们分析了临床数据,重点关注Lp-PLA2和血小板水平。通过多变量逻辑回归分析,我们确定了中风复发的独立预测因素。然后,利用这些预测因素制定了一个综合列线图。该研究确定糖尿病、高血压、低密度脂蛋白(LDL)、Lp-PLA2水平和血小板计数为中风复发的独立预测因素。至关重要的是,相互作用参数Lp-PLA2 * 血小板(Lp-PLA2与血小板计数的乘积)比单独考虑的每个因素具有更强的预测能力。我们的列线图纳入了糖尿病、脑梗死病因、高血压、LDL以及Lp-PLA2 * 血小板计数相互作用因素,与传统风险模型相比,在预测中风复发方面显示出更高的准确性。当与传统风险因素相结合时,Lp-PLA2与血小板之间的相互作用成为中风复发的一个重要预测指标。所开发的列线图为分子神经生物学提供了一种新颖实用的工具,用于评估个体风险,促进个性化治疗策略的制定。这种方法强调了多因素评估在中风管理中的重要性,并为减轻复发风险的靶向干预开辟了途径。