Suppr超能文献

金属有机框架的崛起:从合成到电子皮肤与人工智能

Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence.

作者信息

Sun Qi-Jun, Guo Wen-Tao, Liu Shu-Zheng, Tang Xin-Gui, Roy Vellaisamy Al, Zhao Xin-Hua

机构信息

School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China.

School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 4;16(35):45830-45860. doi: 10.1021/acsami.4c07732. Epub 2024 Aug 23.

Abstract

Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.

摘要

金属有机框架材料(MOFs)凭借其引人入胜的物理和化学性质,在传感器、电阻式存储器和光电突触等领域受到了广泛的研究关注。在这篇综述中,将介绍并讨论MOFs合成及其电子应用的最新进展。首先,简要讨论了MOFs的晶体结构和性质,包括光学、电学和化学性质。随后,介绍了MOFs的先进合成方法,分为水热法、微波合成、机械化学合成和电化学沉积。之后,讨论了MOFs在广泛应用中的各种作用,包括传感、信息存储、光电突触、机器学习和人工智能,突出了它们的多功能性以及它们为长期存在的挑战提供的创新解决方案。最后,提出了MOFs面临的剩余挑战及未来展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验