Department of Radiology and Medical Imaging, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Department of Telecommunication and Information Processing - Image Processing and Interpretation (TELIN-IPI), Faculty of Engineering and Architecture, Ghent University - IMEC, Sint-Pietersnieuwstraat 41, 9000, Ghent, Belgium.
Eur Radiol. 2023 Nov;33(11):8310-8323. doi: 10.1007/s00330-023-09704-y. Epub 2023 May 23.
To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans.
Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18-87 years old, mean 40 ± 13 years, 2005-2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net-n = 10 × 58; CNN-n = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions.
Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++ explainability analysis highlighted cortical edges as focus for pipeline decisions.
An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level.
An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level.
• Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans. • Both automatic segmentation and disease detection yield excellent statistical outcome metrics. • The algorithm takes decisions based on cortical edges, rendering an explainable solution.
评估深度学习网络在检测多中心骨盆 CT 扫描中骶髂关节炎结构病变的可行性和诊断准确性。
回顾性纳入 145 例(81 例女性,121 例根特大学/24 例阿尔伯塔大学,18-87 岁,平均 40±13 岁,2005-2021 年)临床疑似骶髂关节炎的患者的骨盆 CT 扫描。在手动骶髂关节(SIJ)分割和结构病变标注后,训练了一个用于 SIJ 分割的 U-Net 和两个用于侵蚀和强直检测的独立卷积神经网络(CNN)。在测试数据集上进行了训练中验证和 10 倍验证测试(U-Net-n=10×58;CNN-n=10×29),以评估切片和患者水平上的性能(Dice 系数/准确性/灵敏度/特异性/阳性和阴性预测值/ROC AUC)。应用患者水平优化以提高针对预定义统计指标的性能。梯度加权类激活映射(Grad-CAM++)热图可解释性分析突出了算法决策中具有统计学重要区域的图像部分。
在测试数据集中,SIJ 分割的 Dice 系数为 0.75。对于切片结构病变检测,在测试数据集中,侵蚀和强直检测的灵敏度/特异性/ROC AUC 分别为 95%/89%/0.92 和 93%/91%/0.91。经过针对预定义统计指标的管道优化后,在患者水平上检测病变的灵敏度/特异性分别为 95%/85%和 82%/97%,用于侵蚀和强直检测。Grad-CAM++可解释性分析突出了皮质边缘作为管道决策的重点。
经过优化的深度学习管道,包括可解释性分析,可在切片和患者水平上对骨盆 CT 扫描中的骶髂关节炎结构病变进行检测,具有出色的统计性能。
经过优化的深度学习管道,包括稳健的可解释性分析,可在切片和患者水平上对骨盆 CT 扫描中的骶髂关节炎结构病变进行检测,具有出色的统计指标。
• 骶髂关节炎的结构病变可以在骨盆 CT 扫描中自动检测。
• 自动分割和疾病检测都产生了出色的统计结果指标。
• 该算法基于皮质边缘做出决策,提供了一个可解释的解决方案。