Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
Int J Biol Macromol. 2024 Oct;278(Pt 4):134965. doi: 10.1016/j.ijbiomac.2024.134965. Epub 2024 Aug 22.
The major objective of this research revolves around the integration of polypyrrole (PPy) and various concentrations of nitrogen-doped carbon quantum dots (N-CQDs) into a polyacrylamide (PAm)-grafted hydroxyethyl cellulose (gHEC) to produce gHEC@PPy@N-CQDs bionanocomposites that possess environmentally sustainable properties. The intercalation and uniform distribution of N-CQDs inside the gHEC@PPy matrix have been demonstrated through the analysis of data obtained from X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The samples underwent analysis using thermogravimetric analysis (TGA and DTG) as well as scanning and transmission electron microscopy. The improved dispersion of PPy and 4 % N-CQDs inside the matrix led to enhanced electrical characteristics of the graphene-hybridized metal bionanocomposite. The peculiar optical and photoluminescence emission observed in the gHEC@PPy@N-CQDs bionanocomposites can be attributed to the surface groups of N-CQDs and the transition between CN and CN. This hypothesis suggests that these factors play a significant role in determining the observed optical properties. The main goal is to identify distinctive and captivating applications for these bionanocomposites across several domains, including electronics, optical and light-emitting devices with a broad spectrum of colors, and bioimaging applications.
本研究的主要目标是将聚吡咯(PPy)和不同浓度的氮掺杂碳量子点(N-CQDs)整合到聚丙烯酰胺(PAm)接枝羟乙基纤维素(gHEC)中,以制备具有环境可持续性的 gHEC@PPy@N-CQDs 仿生纳米复合材料。通过对 X 射线衍射(XRD)和傅里叶变换红外光谱(FTIR)获得的数据进行分析,证明了 N-CQDs 在 gHEC@PPy 基体中的插层和均匀分布。使用热重分析(TGA 和 DTG)以及扫描和透射电子显微镜对样品进行了分析。在基体中 PPy 和 4% N-CQDs 的分散性得到改善,导致了石墨烯-金属杂交仿生纳米复合材料的电性能得到增强。在 gHEC@PPy@N-CQDs 仿生纳米复合材料中观察到的特殊光学和光致发光发射归因于 N-CQDs 的表面基团和 CN 和 CN 之间的跃迁。这一假设表明,这些因素在确定观察到的光学性质方面起着重要作用。主要目标是确定这些仿生纳米复合材料在包括电子学、具有广泛颜色光谱的光学和发光器件以及生物成像应用在内的多个领域中的独特和吸引人的应用。