Khan Abdullah Aman, Ahmad Khwaja Mutahir, Shafiq Sidra, Amin Waqas, Kumar Rajesh
Sichuan Artificial Intelligence Research Institute, Yibin, 644000, China.
University of Electronic Science and Technology of China, Chengdu, 611731, China.
Sci Rep. 2024 Aug 23;14(1):19589. doi: 10.1038/s41598-024-70326-5.
This paper presents a comprehensive study of 3D point cloud Federated Few-Shot Learning (3DFFL), focusing on addressing challenges such as limited data availability and privacy concerns in point cloud classification for applications such as autonomous vehicles. We introduce a novel approach that integrates Federated Learning with Few-Shot Learning techniques, with a special emphasis on optimizing network architectures for 3D point cloud data. Our method capitalizes on the strengths of PointNet++ for feature extraction and ProtoNet for classification, all within a federated learning framework to ensure data privacy and collaborative learning. Significantly, the approach is augmented with the use of attention and SoftMax layers, enhancing the feature extraction and classification processes. Extensive experiments on the ModelNet40, ShapeNet, and ScanOnjectNN datasets validate our method's accuracy and adaptability in handling 3D point cloud classification, especially in privacy-sensitive and collaborative scenarios. This study not only demonstrates the potential of integrating attention mechanisms and SoftMax layers in 3DFFL but also lays a robust foundation for future advancements in this evolving field, particularly in technologies dependent on 3D data processing.
本文对三维点云联邦少样本学习(3DFFL)进行了全面研究,重点解决诸如自动驾驶等应用中,点云分类里数据可用性有限和隐私问题等挑战。我们引入了一种新颖的方法,将联邦学习与少样本学习技术相结合,特别强调针对三维点云数据优化网络架构。我们的方法利用PointNet++进行特征提取的优势以及ProtoNet进行分类的优势,在联邦学习框架内确保数据隐私和协作学习。值得注意的是,该方法通过使用注意力和SoftMax层进行了增强,提升了特征提取和分类过程。在ModelNet40、ShapeNet和ScanOnjectNN数据集上进行的大量实验验证了我们的方法在处理三维点云分类时的准确性和适应性,特别是在隐私敏感和协作场景中。这项研究不仅展示了在3DFFL中整合注意力机制和SoftMax层的潜力,还为这个不断发展的领域,尤其是依赖三维数据处理的技术的未来发展奠定了坚实基础。