Suppr超能文献

微生物相互作用对群落代谢建模算法性能的影响:通量平衡分析 (FBA)、群落 FBA (cFBA) 和 SteadyCom。

Effect of microbial interactions on performance of community metabolic modeling algorithms: flux balance analysis (FBA), community FBA (cFBA) and SteadyCom.

机构信息

Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Bioprocess Biosyst Eng. 2024 Nov;47(11):1833-1848. doi: 10.1007/s00449-024-03072-7. Epub 2024 Aug 24.

Abstract

To explore the impact of microbial interactions on outcomes from three prevalent algorithms (Flux Balance Analysis (FBA), community FBA (cFBA), and SteadyCom) analyzing microbial community metabolic networks, five toy community models representing common microbial interactions were designed. These include commensalism, mutualism, competition, mutualism-competition, and commensalism-competition. Various scenarios, considering different biomass yields and substrate constraints, were examined for each type. In commensal communities, all algorithms consistently produced similar results. However, changes in biomass yields and substrate constraints led to variable abundances (0.33-0.8) and community growth rates (2-5 1/h) within a broad range. For competitive communities, all algorithms predicted growth of fastest-growing member. To comply with the natural coexistence of members, suboptimal solutions over optimal point are recommended. FBA faced challenges in modeling mutualism, consistently predicting growth of only one member. Although cFBA and SteadyCom resulted in a lower community growth rate, coexistence of both members were satisfied. In toy models with dual interactions, more realistic outcomes were achieved contrary to purely competitive model as the dependency fosters the coexistence which was missing in the competitive only scenarios. These findings emphasize the importance of algorithm choice based on specific microbial interaction types for reliable community behavior predictions.​.

摘要

为了探索微生物相互作用对三种流行算法(通量平衡分析(FBA)、群落 FBA(cFBA)和 SteadyCom)分析微生物群落代谢网络的结果的影响,设计了五个代表常见微生物相互作用的玩具群落模型。这些相互作用包括共生、互利共生、竞争、互利共生竞争和共栖竞争。对于每种类型,考虑了不同生物量产量和基质约束的各种情况进行了检查。在共栖群落中,所有算法都一致地产生了相似的结果。然而,生物量产量和基质约束的变化导致了丰度(0.33-0.8)和社区增长率(2-5 1/h)在广泛范围内的变化。对于竞争群落,所有算法都预测了最快生长成员的生长。为了符合成员的自然共存,建议选择最优点以外的次优解。FBA 在建模互利共生方面面临挑战,始终只预测一个成员的生长。尽管 cFBA 和 SteadyCom 导致社区生长速率较低,但满足了两个成员的共存。在具有双重相互作用的玩具模型中,与纯粹竞争模型相比,实现了更现实的结果,因为依赖性促进了共存,而在仅竞争场景中则缺乏共存。这些发现强调了根据特定微生物相互作用类型选择算法对于可靠的群落行为预测的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验