Suppr超能文献

MBFusion:用于癌症诊断和预后的多模态平衡融合和多任务学习。

MBFusion: Multi-modal balanced fusion and multi-task learning for cancer diagnosis and prognosis.

机构信息

Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, China.

Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis, School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, China.

出版信息

Comput Biol Med. 2024 Oct;181:109042. doi: 10.1016/j.compbiomed.2024.109042. Epub 2024 Aug 24.

Abstract

Pathological images and molecular omics are important information for predicting diagnosis and prognosis. The two kinds of heterogeneous modal data contain complementary information, and the effective fusion of the two modals can better reveal the complex mechanisms of cancer. However, due to the different representation learning methods, the expression strength of different modals in different tasks varies greatly, so that many multimodal fusions do not achieve the best results. In this paper, MBFusion is proposed, to achieve multiple tasks such as prediction of diagnosis and prognosis through multi-modal balanced fusion. The MBFusion framework uses two kinds of specially constructed graph convolutional network to extract the features of molecular omics data, and uses ResNet to extract the features of pathological image data and retain important deep features by using attention and clustering, which effectively improves both kinds of the features representation, making their expressive ability balanced and comparable. The features of these two modal data are then fused through cross-attention Transformer, and the fused features are used to learn both tasks of cancer subtype classification and survival analysis by using multi-task learning. In this paper, MBFusion and other state of the art methods are compared on two public cancer datasets, and MBFusion shows an improvement of up to 10.1% by three kinds of evaluation metrics. In the ablation experiment, MBFusion explores the contribution of each modal data and each framework module to the performance. Furthermore, the interpretability of MBFusion is explained in detail to show the value of application.

摘要

病理图像和分子组学是预测诊断和预后的重要信息。这两种异质模态数据包含互补信息,两种模态的有效融合可以更好地揭示癌症的复杂机制。然而,由于表示学习方法的不同,不同模态在不同任务中的表达强度差异很大,使得许多多模态融合并不能达到最佳效果。本文提出了 MBFusion,通过多模态平衡融合来实现诊断和预后预测等多种任务。MBFusion 框架使用两种专门构建的图卷积网络来提取分子组学数据的特征,使用 ResNet 提取病理图像数据的特征,并通过注意力和聚类保留重要的深层特征,有效地提高了两种特征的表示能力,使它们的表达能力平衡且具有可比性。然后,通过交叉注意力 Transformer 对这两种模态数据的特征进行融合,并用融合特征通过多任务学习来学习癌症亚型分类和生存分析这两个任务。在本文中,将 MBFusion 与两种公开的癌症数据集上的其他最新方法进行了比较,MBFusion 在三种评估指标上的表现提高了 10.1%。在消融实验中,MBFusion 探讨了每种模态数据和每个框架模块对性能的贡献。此外,还详细解释了 MBFusion 的可解释性,以展示其应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验