Suppr超能文献

从少数病例中学习:一种在有限数据集上进行小儿腕部病理识别的细粒度方法。

Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset.

机构信息

Intelligent Systems and Analytics (ISA) Research Group, Department of Computer Science (IDI), Norwegian University of Science & Technology (NTNU), Gjøvik, 2815, Norway.

Department of Informatics, Linnaeus University, Växjö, 351 95, Sweden.

出版信息

Comput Biol Med. 2024 Oct;181:109044. doi: 10.1016/j.compbiomed.2024.109044. Epub 2024 Aug 24.

Abstract

Wrist pathologies, particularly fractures common among children and adolescents, present a critical diagnostic challenge. While X-ray imaging remains a prevalent diagnostic tool, the increasing misinterpretation rates highlight the need for more accurate analysis, especially considering the lack of specialized training among many surgeons and physicians. Recent advancements in deep convolutional neural networks offer promise in automating pathology detection in trauma X-rays. However, distinguishing subtle variations between pediatric wrist pathologies in X-rays remains challenging. Traditional manual annotation, though effective, is laborious, costly, and requires specialized expertise. In this paper, we address the challenge of pediatric wrist pathology recognition with a fine-grained approach, aimed at automatically identifying discriminative regions in X-rays without manual intervention. We refine our fine-grained architecture through ablation analysis and the integration of LION. Leveraging Grad-CAM, an explainable AI technique, we highlight these regions. Despite using limited data, reflective of real-world medical study constraints, our method consistently outperforms state-of-the-art image recognition models on both augmented and original (challenging) test sets. Our proposed refined architecture achieves an increase in accuracy of 1.06% and 1.25% compared to the baseline method, resulting in accuracies of 86% and 84%, respectively. Moreover, our approach demonstrates the highest fracture sensitivity of 97%, highlighting its potential to enhance wrist pathology recognition.

摘要

腕部病变,尤其是儿童和青少年常见的骨折,对诊断提出了重大挑战。虽然 X 射线成像仍然是一种流行的诊断工具,但越来越高的误诊率表明需要更准确的分析,尤其是考虑到许多外科医生和医生缺乏专门的培训。深度卷积神经网络的最新进展为自动检测创伤 X 光片中的病理提供了希望。然而,在 X 光片中区分儿童腕部病变的细微差异仍然具有挑战性。传统的手动标注虽然有效,但很繁琐、昂贵,且需要专门的专业知识。在本文中,我们采用细粒度的方法解决儿童腕部病理识别的挑战,旨在自动识别 X 光片中无需人工干预的有区别的区域。我们通过消融分析和 LION 的集成来改进我们的细粒度架构。利用可解释的人工智能技术 Grad-CAM,我们突出显示这些区域。尽管使用的数据有限,反映了现实世界医学研究的限制,但我们的方法在增强和原始(具有挑战性)测试集上始终优于最先进的图像识别模型。我们提出的改进架构与基线方法相比,准确性分别提高了 1.06%和 1.25%,分别达到 86%和 84%。此外,我们的方法显示出 97%的最高骨折灵敏度,突出了其增强腕部病理识别的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验