Department of Biomedical Engineering & Physics, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands.
Department of Biomedical Engineering & Physics, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands; Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands.
Comput Methods Programs Biomed. 2024 Nov;256:108377. doi: 10.1016/j.cmpb.2024.108377. Epub 2024 Aug 22.
Artificial intelligence (AI) is revolutionizing Magnetic Resonance Imaging (MRI) along the acquisition and processing chain. Advanced AI frameworks have been applied in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. However, existing frameworks are often designed to perform tasks independently of each other or are focused on specific models or single datasets, limiting generalization. This work introduces the Advanced Toolbox for Multitask Medical Imaging Consistency (ATOMMIC), a novel open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several tasks using deep learning (DL) models and enables MultiTask Learning (MTL) to perform related tasks in an integrated manner, targeting generalization in the MRI domain.
We conducted a comprehensive literature review and analyzed 12,479 GitHub repositories to assess the current landscape of AI frameworks for MRI. Subsequently, we demonstrate how ATOMMIC standardizes workflows and improves data interoperability, enabling effective benchmarking of various DL models across MRI tasks and datasets. To showcase ATOMMIC's capabilities, we evaluated twenty-five DL models on eight publicly available datasets, focusing on accelerated MRI reconstruction, segmentation, quantitative parameter map estimation, and joint accelerated MRI reconstruction and segmentation using MTL.
ATOMMIC's high-performance training and testing capabilities, utilizing multiple GPUs and mixed precision support, enable efficient benchmarking of multiple models across various tasks. The framework's modular architecture implements each task through a collection of data loaders, models, loss functions, evaluation metrics, and pre-processing transformations, facilitating seamless integration of new tasks, datasets, and models. Our findings demonstrate that ATOMMIC supports MTL for multiple MRI tasks with harmonized complex-valued and real-valued data support while maintaining active development and documentation. Task-specific evaluations demonstrate that physics-based models outperform other approaches in reconstructing highly accelerated acquisitions. These high-quality reconstruction models also show superior accuracy in estimating quantitative parameter maps. Furthermore, when combining high-performing reconstruction models with robust segmentation networks through MTL, performance is improved in both tasks.
ATOMMIC advances MRI reconstruction and analysis by leveraging MTL and ensuring consistency across tasks, models, and datasets. This comprehensive framework serves as a versatile platform for researchers to use existing AI methods and develop new approaches in medical imaging.
人工智能(AI)正在沿磁共振成像(MRI)的采集和处理链进行革新。先进的 AI 框架已被应用于各种连续任务,例如图像重建、定量参数图估计和图像分割。然而,现有的框架通常设计为彼此独立执行任务,或者专注于特定的模型或单一数据集,限制了通用性。本工作引入了用于多任务医学成像一致性的高级工具包(ATOMMIC),这是一个新颖的开源工具包,可简化用于加速 MRI 重建和分析的 AI 应用。ATOMMIC 使用深度学习(DL)模型实现了多个任务,并通过多任务学习(MTL)以集成的方式执行相关任务,以实现 MRI 领域的泛化。
我们进行了全面的文献综述,并分析了 12479 个 GitHub 存储库,以评估用于 MRI 的 AI 框架的当前现状。随后,我们展示了 ATOMMIC 如何标准化工作流程并提高数据互操作性,从而能够在各种 MRI 任务和数据集上有效基准测试各种 DL 模型。为了展示 ATOMMIC 的功能,我们在八个公开可用的数据集上评估了二十五种 DL 模型,重点是加速 MRI 重建、分割、定量参数图估计以及使用 MTL 的联合加速 MRI 重建和分割。
ATOMMIC 具有高性能的训练和测试能力,利用多个 GPU 和混合精度支持,能够在各种任务上高效基准测试多个模型。该框架的模块化架构通过一组数据加载器、模型、损失函数、评估指标和预处理变换来实现每个任务,便于无缝集成新任务、数据集和模型。我们的研究结果表明,ATOMMIC 支持多任务学习(MTL),可对具有协调的复数值和实数值数据支持的多个 MRI 任务进行操作,同时保持积极的开发和文档记录。任务特定的评估表明,基于物理的模型在重建高度加速采集方面优于其他方法。这些高质量的重建模型在估计定量参数图方面也表现出更高的准确性。此外,通过 MTL 将高性能的重建模型与稳健的分割网络结合使用,可以提高两个任务的性能。
ATOMMIC 通过利用多任务学习(MTL)并确保任务、模型和数据集之间的一致性,推进了 MRI 重建和分析。这个全面的框架是研究人员使用现有 AI 方法和开发医学成像新方法的多功能平台。