Department of Biochemistry and Molecular Biology II, School of Pharmacy, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA) and Center of Biomedical Research, University of Granada, Granada, 18071, Spain; Instituto de investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain; Barcelona Institute for Global Health, ISGlobal, Barcelona, 08003, Spain.
Artif Intell Med. 2024 Oct;156:102962. doi: 10.1016/j.artmed.2024.102962. Epub 2024 Aug 20.
Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
儿科肥胖症会极大地增加成年后患心血管代谢异常的风险,而胰岛素抵抗是肥胖与心血管风险增加联系的基石。青春期已被指出是一个关键阶段,此后肥胖相关的胰岛素抵抗更难逆转。因此,及时预测儿科肥胖症的胰岛素抵抗对于降低其相关并发症的风险至关重要。在生命早期构建有效的、稳健的预测系统来预测胰岛素抵抗等复杂的健康结果,需要采用纵向设计来进行更具因果关系的推断,并整合其发病过程中涉及的各种性质的因素。在这项工作中,我们提出了一个基于可解释人工智能的决策支持管道,用于对 90 名儿童的纵向队列进行早期胰岛素抵抗诊断。为此,我们利用了多组学(基因组学和表观基因组学)以及来自青春期前阶段的临床数据。根据机器学习的良好实践,考虑了不同的数据层组合、预处理技术(缺失值、特征选择、类别不平衡等)、算法和训练过程。为了让专家了解系统的决策机制以及特征对每个自动决策的影响,我们提供了 Shapley Additive exPlanations,这在像这样的高风险领域是一个重要问题,因为系统的决策可能会影响人们的生活。该系统表现出了相关的预测能力(AUC 和 G-mean 为 0.92)。在全局和局部层面的深入探索,揭示了我们人群中胰岛素抵抗的有前途的生物标志物,突出了经典标志物,如体重指数 z 分数或瘦素/脂联素比值,以及新的标志物,如相关基因的甲基化模式,如 HDAC4、PTPRN2、MATN2、RASGRF1 和 EBF1。我们的研究结果强调了在构建决策支持系统时,整合多组学数据和遵循可解释人工智能趋势的重要性。