Suppr超能文献

基于血液转录组学的机器学习诊断模型用于幼儿糖尿病预测的开发与验证。

Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction.

作者信息

Huang Xin, Ouyang Di, Xie Weiming, Zhuang Huawei, Gao Siyu, Liu Pan, Guo Lizhong

机构信息

The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.

Yulin Hospital of Traditional Chinese Medicine, Yulin, China.

出版信息

Front Med (Lausanne). 2025 Jul 16;12:1636214. doi: 10.3389/fmed.2025.1636214. eCollection 2025.

Abstract

BACKGROUND

Early identification of Type 1 Diabetes Mellitus (T1DM) in pediatric populations is crucial for implementing timely interventions and improving long-term outcomes. Peripheral blood transcriptomic analysis provides a minimally invasive approach for identifying predictive biomarkers prior to clinical manifestation. This study aimed to develop and validate machine learning algorithms utilizing transcriptomic signatures to predict T1DM onset in children up to 46 months before clinical diagnosis.

METHODS

We analyzed 247 peripheral blood RNA-sequencing samples from pre-diabetic children and age-matched healthy controls. Differential gene expression analysis was performed using established bioinformatics pipelines to identify significantly dysregulated transcripts. Five feature selection methods (Lasso, Elastic Net, Random Forest, Support Vector Machine, and Gradient Boosting Machine) were employed to optimize gene sets. Nine machine learning algorithms (Decision Tree, Gradient Boosting Machine, K-Nearest Neighbors, Linear Discriminant Analysis, Logistic Regression, Multilayer Perceptron, Naive Bayes, Random Forest, and Support Vector Machine) were combined with selected features, generating 45 unique model combinations. Performance was evaluated using accuracy, precision, recall, and F1-score metrics. Model validation was conducted using quantitative polymerase chain reaction (qPCR) in an independent cohort of six children (three healthy, three diabetic).

RESULTS

Transcriptomic analysis revealed significant differential expression patterns between pre-diabetic and control groups. Four model combinations demonstrated superior predictive performance: Lasso+K-Nearest Neighbors, Elastic Net + K-Nearest Neighbors, Elastic Net + Random Forest, and Support Vector Machine+K-Nearest Neighbors. These models achieved high accuracy in predicting diabetes onset up to 46 months before clinical diagnosis. Both Elastic Net-based models achieved perfect classification performance in the validation cohort, demonstrating their potential as clinically viable diagnostic tools.

CONCLUSION

This study establishes the feasibility of integrating peripheral blood transcriptomic profiling with machine learning for early pediatric T1DM prediction. The identified transcriptomic signatures and validated predictive models provide a foundation for developing clinically translatable, non-invasive diagnostic tools. These findings support the implementation of precision medicine approaches for childhood diabetes prevention and warrant validation in larger, multi-center cohorts to assess generalizability and clinical utility.

摘要

背景

在儿科人群中早期识别1型糖尿病(T1DM)对于及时实施干预措施和改善长期预后至关重要。外周血转录组分析为在临床表现出现之前识别预测性生物标志物提供了一种微创方法。本研究旨在开发和验证利用转录组特征的机器学习算法,以预测临床诊断前长达46个月的儿童T1DM发病情况。

方法

我们分析了来自糖尿病前期儿童和年龄匹配的健康对照的247份外周血RNA测序样本。使用既定的生物信息学管道进行差异基因表达分析,以识别显著失调的转录本。采用五种特征选择方法(套索回归、弹性网络、随机森林、支持向量机和梯度提升机)来优化基因集。将九种机器学习算法(决策树、梯度提升机、K近邻、线性判别分析、逻辑回归、多层感知器、朴素贝叶斯、随机森林和支持向量机)与选定的特征相结合,生成45种独特的模型组合。使用准确率、精确率、召回率和F1分数指标评估性能。在一个由六名儿童(三名健康儿童、三名糖尿病儿童)组成的独立队列中,使用定量聚合酶链反应(qPCR)进行模型验证。

结果

转录组分析揭示了糖尿病前期组和对照组之间显著的差异表达模式。四种模型组合表现出卓越的预测性能:套索回归+K近邻、弹性网络+K近邻、弹性网络+随机森林和支持向量机+K近邻。这些模型在预测临床诊断前长达46个月的糖尿病发病方面具有很高的准确率。基于弹性网络的两种模型在验证队列中均实现了完美的分类性能,证明了它们作为临床可行诊断工具的潜力。

结论

本研究确立了将外周血转录组分析与机器学习相结合用于早期儿科T1DM预测的可行性。所识别的转录组特征和经过验证的预测模型为开发临床可转化的非侵入性诊断工具奠定了基础。这些发现支持实施精准医学方法来预防儿童糖尿病,并需要在更大的多中心队列中进行验证,以评估其普遍性和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c5/12308849/910bcf5816bb/fmed-12-1636214-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验