Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Laboratory of Brain Atlas and Brain-Inspired Intelligence, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
Laboratory of Brain Atlas and Brain-Inspired Intelligence, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
Neural Netw. 2024 Nov;179:106617. doi: 10.1016/j.neunet.2024.106617. Epub 2024 Aug 8.
Vigilance state is crucial for the effective performance of users in brain-computer interface (BCI) systems. Most vigilance estimation methods rely on a large amount of labeled data to train a satisfactory model for the specific subject, which limits the practical application of the methods. This study aimed to build a reliable vigilance estimation method using a small amount of unlabeled calibration data. We conducted a vigilance experiment in the designed BCI-based cursor-control task. Electroencephalogram (EEG) signals of eighteen participants were recorded in two sessions on two different days. And, we proposed a contrastive fine-grained domain adaptation network (CFGDAN) for vigilance estimation. Here, an adaptive graph convolution network (GCN) was built to project the EEG data of different domains into a common space. The fine-grained feature alignment mechanism was designed to weight and align the feature distributions across domains at the EEG channel level, and the contrastive information preservation module was developed to preserve the useful target-specific information during the feature alignment. The experimental results show that the proposed CFGDAN outperforms the compared methods in our BCI vigilance dataset and SEED-VIG dataset. Moreover, the visualization results demonstrate the efficacy of the designed feature alignment mechanisms. These results indicate the effectiveness of our method for vigilance estimation. Our study is helpful for reducing calibration efforts and promoting the practical application potential of vigilance estimation methods.
警觉状态对于脑机接口 (BCI) 系统中用户的有效性能至关重要。大多数警觉估计方法依赖于大量标记数据来训练特定主体的满意模型,这限制了方法的实际应用。本研究旨在使用少量未标记的校准数据构建可靠的警觉估计方法。我们在设计的基于脑电的光标控制任务中进行了警觉实验。十八名参与者的脑电图 (EEG) 信号在两天的两个不同会话中被记录下来。并且,我们提出了一种用于警觉估计的对比细粒度领域自适应网络 (CFGDAN)。在这里,构建了一个自适应图卷积网络 (GCN) 将不同域的 EEG 数据投影到公共空间中。设计了细粒度特征对齐机制,以在 EEG 通道级别对跨域的特征分布进行加权和对齐,并开发了对比信息保持模块,以在特征对齐过程中保留有用的特定于目标的信息。实验结果表明,所提出的 CFGDAN 在我们的 BCI 警觉数据集和 SEED-VIG 数据集上优于比较方法。此外,可视化结果证明了所设计的特征对齐机制的有效性。这些结果表明我们的方法对于警觉估计是有效的。我们的研究有助于减少校准工作并促进警觉估计方法的实际应用潜力。