IEEE Trans Neural Syst Rehabil Eng. 2024;32:3543-3553. doi: 10.1109/TNSRE.2024.3457502. Epub 2024 Sep 25.
The calibration procedure for a wearable P300 brain-computer interface (BCI) greatly impact the user experience of the system. Each user needs to spend additional time establishing a decoder adapted to their own brainwaves. Therefore, achieving subject independent is an urgent issue for wearable P300 BCI needs to be addressed. A dataset of electroencephalogram (EEG) signals was constructed from 100 individuals by conducting a P300 speller task with a wearable EEG amplifier. A framework is proposed that initially improves cross- subject consistency of EEG features through a common feature extractor. Subsequently, a simple and compact convolutional neural network (CNN) architecture is employed to learn an embedding sub-space, where the mapped EEG features are maximally separated, while pursuing the minimum distance within the same class and the maximum distance between different classes. Finally, the model's generalization capability was further optimized through fine-tuning. Results: The proposed method significantly boosts the average accuracy of wearable P300 BCI to 73.23±7.62 % without calibration and 78.75±6.37 % with fine-tuning. The results demonstrate the feasibility and excellent performance of our dataset and framework. A calibration-free wearable P300 BCI system is feasible, suggesting significant potential for practical applications of the wearable P300 BCI system.
可穿戴 P300 脑机接口 (BCI) 的校准程序对系统的用户体验有很大影响。每个用户都需要花费额外的时间来建立一个适应自己脑电波的解码器。因此,实现无需校准的目标是可穿戴 P300 BCI 需要解决的一个紧迫问题。通过使用可穿戴式 EEG 放大器进行 P300 拼写任务,从 100 个人构建了一个脑电图 (EEG) 信号数据集。提出了一种框架,该框架最初通过公共特征提取器来提高 EEG 特征的跨主体一致性。随后,采用简单紧凑的卷积神经网络 (CNN) 架构来学习嵌入子空间,其中映射的 EEG 特征最大程度地分离,同时在同一类内追求最小距离,在不同类之间追求最大距离。最后,通过微调进一步优化模型的泛化能力。结果:所提出的方法显著提高了无校准时可穿戴 P300 BCI 的平均准确率,达到 73.23±7.62 %,微调后达到 78.75±6.37 %。结果表明了我们数据集和框架的可行性和优异性能。无校准的可穿戴 P300 BCI 系统是可行的,这表明可穿戴 P300 BCI 系统具有很大的实际应用潜力。