Suppr超能文献

从视网膜成像估计生物年龄:范围综述。

Estimating biological age from retinal imaging: a scoping review.

机构信息

SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa

SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.

出版信息

BMJ Open Ophthalmol. 2024 Aug 24;9(1):e001794. doi: 10.1136/bmjophth-2024-001794.

Abstract

BACKGROUND/AIMS: The emerging concept of retinal age, a biomarker derived from retinal images, holds promise in estimating biological age. The retinal age gap (RAG) represents the difference between retinal age and chronological age, which serves as an indicator of deviations from normal ageing. This scoping review aims to collate studies on retinal age to determine its potential clinical utility and to identify knowledge gaps for future research.

METHODS

Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, eligible non-review, human studies were identified, selected and appraised. PubMed, Scopus, SciELO, PsycINFO, Google Scholar, Cochrane, CINAHL, Africa Wide EBSCO, MedRxiv and BioRxiv databases were searched to identify literature pertaining to retinal age, the RAG and their associations. No restrictions were imposed on publication date.

RESULTS

Thirteen articles published between 2022 and 2023 were analysed, revealing four models capable of determining biological age from retinal images. Three models, 'Retinal Age', 'EyeAge' and a 'convolutional network-based model', achieved comparable mean absolute errors: 3.55, 3.30 and 3.97, respectively. A fourth model, 'RetiAGE', predicting the probability of being older than 65 years, also demonstrated strong predictive ability with respect to clinical outcomes. In the models identified, a higher predicted RAG demonstrated an association with negative occurrences, notably mortality and cardiovascular health outcomes.

CONCLUSION

This review highlights the potential clinical application of retinal age and RAG, emphasising the need for further research to establish their generalisability for clinical use, particularly in neuropsychiatry. The identified models showcase promising accuracy in estimating biological age, suggesting its viability for evaluating health status.

摘要

背景/目的:视网膜年龄是一种从视网膜图像中提取的生物标志物,它代表了视网膜年龄与实际年龄之间的差异,反映了与正常衰老过程的偏差。本研究旨在对评估视网膜年龄的相关研究进行综述,以确定其在临床应用中的潜在价值,并确定未来研究的知识空白。

方法

使用系统评价和荟萃分析的首选报告项目清单,对非综述性、人类研究进行筛选、选择和评估。检索了 PubMed、Scopus、SciELO、PsycINFO、Google Scholar、Cochrane、CINAHL、Africa Wide EBSCO、MedRxiv 和 BioRxiv 数据库,以确定与视网膜年龄、视网膜年龄差距及其关联相关的文献。未对发表日期进行限制。

结果

共分析了 2022 年至 2023 年期间发表的 13 篇文章,揭示了 4 种能够从视网膜图像中确定生物年龄的模型。其中,“Retinal Age”、“EyeAge”和“基于卷积网络的模型”三种模型的平均绝对误差相当,分别为 3.55、3.30 和 3.97。第四个模型“RetiAGE”用于预测 65 岁以上的概率,在预测临床结局方面也表现出较强的预测能力。在所确定的模型中,较高的预测 RAG 与负面事件(尤其是死亡率和心血管健康结局)相关。

结论

本综述强调了视网膜年龄和 RAG 的潜在临床应用,强调需要进一步研究以确定其在临床应用中的普遍性,特别是在神经精神病学领域。所识别的模型在估计生物年龄方面表现出较高的准确性,表明其在评估健康状况方面具有一定的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b291/11344507/57f512df6a46/bmjophth-9-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验