Suppr超能文献

基于基础模型的分布式学习增强视网膜年龄预测。

Foundation model-driven distributed learning for enhanced retinal age prediction.

机构信息

Department of Radiology, University of Calgary, Calgary, AB T2N 4N1, Canada.

Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 4N1, Canada.

出版信息

J Am Med Inform Assoc. 2024 Nov 1;31(11):2550-2559. doi: 10.1093/jamia/ocae220.

Abstract

OBJECTIVES

The retinal age gap (RAG) is emerging as a potential biomarker for various diseases of the human body, yet its utility depends on machine learning models capable of accurately predicting biological retinal age from fundus images. However, training generalizable models is hindered by potential shortages of diverse training data. To overcome these obstacles, this work develops a novel and computationally efficient distributed learning framework for retinal age prediction.

MATERIALS AND METHODS

The proposed framework employs a memory-efficient 8-bit quantized version of RETFound, a cutting-edge foundation model for retinal image analysis, to extract features from fundus images. These features are then used to train an efficient linear regression head model for predicting retinal age. The framework explores federated learning (FL) as well as traveling model (TM) approaches for distributed training of the linear regression head. To evaluate this framework, we simulate a client network using fundus image data from the UK Biobank. Additionally, data from patients with type 1 diabetes from the UK Biobank and the Brazilian Multilabel Ophthalmological Dataset (BRSET) were utilized to explore the clinical utility of the developed methods.

RESULTS

Our findings reveal that the developed distributed learning framework achieves retinal age prediction performance on par with centralized methods, with FL and TM providing similar performance (mean absolute error of 3.57 ± 0.18 years for centralized learning, 3.60 ± 0.16 years for TM, and 3.63 ± 0.19 years for FL). Notably, the TM was found to converge with fewer local updates than FL. Moreover, patients with type 1 diabetes exhibited significantly higher RAG values than healthy controls in all models, for both the UK Biobank and BRSET datasets (P < .001).

DISCUSSION

The high computational and memory efficiency of the developed distributed learning framework makes it well suited for resource-constrained environments.

CONCLUSION

The capacity of this framework to integrate data from underrepresented populations for training of retinal age prediction models could significantly enhance the accessibility of the RAG as an important disease biomarker.

摘要

目的

视网膜年龄差距(RAG)作为人体各种疾病的潜在生物标志物正在出现,但它的实用性取决于能够准确地从眼底图像预测生物视网膜年龄的机器学习模型。然而,训练可推广的模型受到潜在的多样化训练数据短缺的阻碍。为了克服这些障碍,这项工作开发了一种新颖的、计算效率高的视网膜年龄预测分布式学习框架。

材料和方法

所提出的框架采用了一种内存高效的 8 位量化版本的 RETFound,这是一种用于视网膜图像分析的前沿基础模型,从眼底图像中提取特征。然后,这些特征用于训练一个高效的线性回归头模型,以预测视网膜年龄。该框架探索了联邦学习(FL)和旅行模型(TM)方法来进行线性回归头的分布式训练。为了评估这个框架,我们使用来自英国生物库的眼底图像数据模拟了一个客户端网络。此外,还利用来自英国生物库的 1 型糖尿病患者的数据和巴西多标签眼科数据集(BRSET)来探索所开发方法的临床应用。

结果

我们的研究结果表明,所开发的分布式学习框架在与集中式方法相当的视网膜年龄预测性能方面表现出色,FL 和 TM 提供了相似的性能(集中式学习的平均绝对误差为 3.57±0.18 岁,TM 为 3.60±0.16 岁,FL 为 3.63±0.19 岁)。值得注意的是,与 FL 相比,TM 发现收敛所需的本地更新次数更少。此外,在所有模型中,1 型糖尿病患者的 RAG 值明显高于英国生物库和 BRSET 数据集的健康对照组(P<.001)。

讨论

所开发的分布式学习框架具有较高的计算和内存效率,非常适合资源受限的环境。

结论

该框架能够整合来自代表性不足人群的数据来训练视网膜年龄预测模型,这可以显著提高 RAG 作为一种重要疾病生物标志物的可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c1/11491655/250abb1f8e80/ocae220f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验