Department of Mathematics and Statistics, University of Calgary, Mathematical Sciences 476, 2500 University Drive NW, T2N 1N4, Calgary, AB, Canada.
Department of Mathematics and Statistics, University of Calgary, Mathematical Sciences 476, 2500 University Drive NW, T2N 1N4, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, CWPH1E31, 3280 Hospital Drive NW, T2N 4Z6, Calgary, AB, Canada.
Spat Spatiotemporal Epidemiol. 2024 Aug;50:100673. doi: 10.1016/j.sste.2024.100673. Epub 2024 Jul 14.
Epidemic models serve as a useful analytical tool to study how a disease behaves in a given population. Individual-level models (ILMs) can incorporate individual-level covariate information including spatial information, accounting for heterogeneity within the population. However, the high-level data required to parameterize an ILM may often be available only for a sub-population of a larger population (e.g., a given county, province, or country). As a result, parameter estimates may be affected by edge effects caused by infection originating from outside the observed population. Here, we look at how such edge effects can bias parameter estimates for within the context of spatial ILMs, and suggest a method to improve model fitting in the presence of edge effects when some global measure of epidemic severity is available from the unobserved part of the population. We apply our models to simulated data, as well as data from the UK 2001 foot-and-mouth disease epidemic.
疫情模型是研究疾病在特定人群中表现的有用分析工具。个体水平模型(ILM)可以纳入包括空间信息在内的个体水平协变量信息,从而解释人群内部的异质性。然而,为个体水平模型进行参数化所需的高级别数据通常仅在较大人群的子人群中可用(例如,特定的县、省或国家)。因此,参数估计可能会受到源自观察人群外部的感染引起的边缘效应的影响。在这里,我们研究了在空间个体水平模型的背景下,这种边缘效应对参数估计的影响,并提出了一种在存在边缘效应时改进模型拟合的方法,此时可以从人群的未观察部分获得疫情严重程度的全局度量。我们将模型应用于模拟数据以及英国 2001 年口蹄疫疫情的数据。